Skip to main content

Advertisement

Log in

CFTR induces extracellular acid sensing in Xenopus oocytes which activates endogenous Ca2+-activated Cl- conductance

  • Transport Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) produces a cyclic adenosine monophosphate (cAMP)-dependent Cl- conductance of distinct properties that is essential for electrolyte secretion in human epithelial tissues. However, the functional consequences of CFTR expression are multifaceted, encompassing much more than simply supplying a cellular cAMP-regulated Cl- conductance. When we expressed CFTR in Xenopus oocytes, we found that extracellular acidic pH activates a Ca2+-dependent outwardly rectifying Cl- conductance that does not reflect CFTR activity. The proton-activated Cl- conductance showed biophysical and pharmacological features of a Ca2+-dependent Cl- conductance, most likely mediated by Xenopus TMEM16A. In contrast to the effects of extracellular acidification, intracellular acidification did not activate an endogenous Cl- conductance. Proton/CFTR-mediated activation of human TMEM16A was also detected in HEK293 cells. The gating mutant G551D-CFTR conferred proton sensitivity, while deltaF508-CFTR enabled proton activation of TMEM16A only in Xenopus oocytes, which, unlike HEK293 cells, allow deltaF508-CFTR to be trafficked to the cell membrane. Activation of TMEM16A by lysophosphatidic acid was enhanced in the presence of CFTR but was additive with activation by extracellular protons. Because expression of CFTR-E1474X did not confer proton sensitivity, we propose that CFTR translocates a proton receptor to the plasma membrane via its PDZ-binding domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Amaral MD, Kunzelmann K (2007) Molecular targeting of CFTR as a therapeutic approach to cystic fibrosis. Trends Pharmacol Sci 28:334–341

    Article  PubMed  CAS  Google Scholar 

  2. Anderson MP, Welsh MJ (1991) Calcium and cAMP activate different chloride channels in the apical membrane of normal and cystic fibrosis epithelia. Proc Natl Acad Sci USA 88:6003–6007

    Article  PubMed  CAS  Google Scholar 

  3. Arnett T (2003) Regulation of bone cell function by acid–base balance. Proc Nutr Soc 62:511–520

    Article  PubMed  CAS  Google Scholar 

  4. Barro Soria R, AlDehni F, Almaca J, Witzgall R, Schreiber R, Kunzelmann K (2009) ER localized bestrophin1 acts as a counter-ion channel to activate Ca2+ dependent ion channels TMEM16A and SK4. Pflugers Arch 459:485–497

    Article  PubMed  Google Scholar 

  5. Bompadre SG, Sohma Y, Li M, Hwang TC (2007) G551D and G1349D, two CF-associated mutations in the signature sequences of CFTR, exhibit distinct gating defects. J Gen Physiol 129:285–298

    Article  PubMed  CAS  Google Scholar 

  6. Bronckers A, Kalogeraki L, Jorna HJ, Wilke M, Bervoets TJ, Lyaruu DM, Zandieh-Doulabi B, Denbesten P, De Jonge H (2010) The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in maturation stage ameloblasts, odontoblasts and bone cells. Bone 46:1188–1196

    Article  PubMed  CAS  Google Scholar 

  7. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322:590–594

    Article  PubMed  CAS  Google Scholar 

  8. Chen JH, Cai Z, Sheppard DN (2009) Direct sensing of intracellular pH by the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. J Biol Chem 284:35495–35506

    Article  PubMed  CAS  Google Scholar 

  9. Dalemans W, Barbry P, Champigny G, Jallat S, Dott K, Dreyer D, Crystal RG, Pavirani A, Lecocq J-P, Lazdunski M (1992) Altered chloride ion channel kinetics associated with the deltaF508 cystic fibrosis mutation. Nature 354:526–528

    Article  Google Scholar 

  10. Dawson DC, Smith SS, Mansoura MK (1999) CFTR: mechanism of anion conduction. Physiol Rev 79:S47–S75

    PubMed  CAS  Google Scholar 

  11. Denning GM, Anderson MP, Amara JF, Marshall J, Smith AE, Welsh MJ (1992) Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358:761–764

    Article  PubMed  CAS  Google Scholar 

  12. Dif F, Marty C, Baudoin C, de Vernejoul MC, Levi G (2004) Severe osteopenia in CFTR-null mice. Bone 35:595–603

    Article  PubMed  CAS  Google Scholar 

  13. Doring G, Conway SP (2008) Osteoporosis in cystic fibrosis. J Pediatr 84:1–3

    Article  Google Scholar 

  14. Drumm ML, Wilkinson DJ, Smit LS, Worrell RT, Strong TV, Frizzell RA, Dawson DC, Collins FS (1991) Chloride conductance expressed by deltaF508 and other mutant CFTRs in Xenopus oocytes. Science 254:1797–1799

    Article  PubMed  CAS  Google Scholar 

  15. Duffield MD, Rychkov GY, Bretag AH, Roberts ML (2005) Zinc inhibits human ClC-1 muscle chloride channel by interacting with its common gating mechanism. J Physiol 568:5–12

    Article  PubMed  CAS  Google Scholar 

  16. Ferrera L, Caputo A, Ubby I, Bussani E, Zegarra-Moran O, Ravazzolo R, Pagani F, Galietta LJ (2009) Regulation of TMEM16A chloride channel properties by alternative splicing. J Biol Chem 284:33360–33368

    Article  PubMed  CAS  Google Scholar 

  17. Grubb BR, Vick RN, Boucher RC (1994) Hyperabsorption of Na+ and raised Ca2+ mediated Cl- secretion in nasal epithelia of CF mice. Am J Physiol 266:C1478–C1483

    PubMed  CAS  Google Scholar 

  18. Guggino WB, Stanton BA (2006) New insights into cystic fibrosis: molecular switches that regulate CFTR. Nat Rev Mol Cell Biol 7:426–436

    Article  PubMed  CAS  Google Scholar 

  19. Haston CK, Li W, Li A, Lafleur M, Henderson JE (2008) Persistent osteopenia in adult cystic fibrosis transmembrane conductance regulator-deficient mice. Am J Respir Crit Care Med 177:309–315

    Article  PubMed  Google Scholar 

  20. Henriksen K, Bollerslev J, Everts V, Karsdal MA (2011) Osteoclast activity and subtypes as a function of physiology and pathology — implications for future treatments of osteoporosis. Endocr Rev 32:31–63

    Article  PubMed  CAS  Google Scholar 

  21. Javier RM, Jacquot J (2011) Bone disease in cystic fibrosis: what’s new? Joint Bone Spine

  22. Knowles MR, Clarke LL, Boucher RC (1991) Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis. N Engl J Med 325:533–538

    Article  PubMed  CAS  Google Scholar 

  23. Kunzelmann K (2001) CFTR: interacting with everything? News Physiol Sci 17:167–170

    Google Scholar 

  24. Kunzelmann K (2011) Assessment of CFTR function. In: Cystic fibrosis: methods and protocols. In: Amaral M, Kunzelmann K (eds) Methods in molecular biology (in press) 2

  25. Kunzelmann K, Kongsuphol P, AlDehni F, Tian Y, Ousingsawat J, Warth R, Schreiber R (2009) Bestrophin and TMEM16 — Ca2+ activated Cl- channels with different functions. Cell Calcium 46:233–241

    Article  PubMed  CAS  Google Scholar 

  26. Kunzelmann K, Mall M, Briel M, Hipper A, Nitschke R, Ricken S, Greger R (1997) The cystic fibrosis transmembrane conductance regulator attenuates the endogenous Ca2+ activated Cl- conductance in Xenopus ooyctes. Pflugers Arch 434:178–181

    Article  Google Scholar 

  27. Kunzelmann K, Schreiber R, Cook DI (2002) Mechanisms for inhibition of amiloride-sensitive Na+ absorption by extracellular nuceotides in mouse trachea. Pflugers Arch 444:220–226

    Article  PubMed  CAS  Google Scholar 

  28. Li C, Dandridge KS, Di A, Marrs KL, Harris EL, Roy K, Jackson JS, Makarova NV, Fujiwara Y, Farrar PL, Nelson DJ, Tigyi GJ, Naren AP (2005) Lysophosphatidic acid inhibits cholera toxin-induced secretory diarrhea through CFTR-dependent protein interactions. J Exp Med 202:975–986

    Article  PubMed  CAS  Google Scholar 

  29. Li C, Krishnamurthy PC, Penmatsa H, Marrs KL, Wang XQ, Zaccolo M, Jalink K, Li M, Nelson DJ, Schuetz JD, Naren AP (2007) Spatiotemporal coupling of cAMP transporter to CFTR chloride channel function in the gut epithelia. Cell 131:940–951

    Article  PubMed  CAS  Google Scholar 

  30. Mall M, Gonska T, Thomas J, Schreiber R, Seydewitz HH, Kuehr J, Brandis M, Kunzelmann K (2003) Modulation of Ca2+ activated Cl- secretion by basolateral K+ channels in human normal and cystic fibrosis airway epithelia. Pediatr Res 53:608–618

    Article  PubMed  CAS  Google Scholar 

  31. Martins JR, Kongsuphol P, Sammels E, AlDehni F, Clarke L, Schreiber R, De Smedt H, Amaral MD, Kunzelmann K (2011) F508del-CFTR increases intracellular Ca2+ signaling that causes enhanced calcium-dependent Cl- conductance in cystic fibrosis. Acta Physiol Scand (Abtract) 201S682:P271

  32. Namkung W, Thiagarajah JR, Phuan PW, Verkman AS (2010) Inhibition of Ca2+-activated Cl- channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea. FASEB J 24:4178–4186

    Article  PubMed  CAS  Google Scholar 

  33. Naren AP, Cobb B, Li C, Roy K, Nelson D, Heda GD, Liao J, Kirk KL, Sorscher EJ, Hanrahan JW, Clancy JP (2003) A macromolecular complex of beta 2 adrenergic receptor, CFTR, and ezrin/radixin/moesin-binding phosphoprotein 50 is regulated by PKA. Proc Natl Acad Sci USA 100:342–346

    Article  PubMed  CAS  Google Scholar 

  34. Noh SJ, Kim MJ, Shim S, Han JK (1998) Different signaling pathway between sphingosine-1-phosphate and lysophosphatidic acid in Xenopus oocytes: functional coupling of the sphingosine-1-phosphate receptor to PLC-xbeta in Xenopus oocytes. J Cell Physiol 176:412–423

    Article  PubMed  CAS  Google Scholar 

  35. Oceandy D, McMorran BJ, Smith SN, Schreiber R, Kunzelmann K, Alton EWF, Hume DA, Wainwright BJ (2002) Gene complementation of airway epithelium in the cystic fibrosis mouse in necessary and sufficient to correct the pathogen clearance and inflammatory abnormalities. Hum Mol Genet 11:1059–1067

    Article  PubMed  CAS  Google Scholar 

  36. Ousingsawat J, Martins JR, Schreiber R, Rock JR, Harfe BD, Kunzelmann K (2009) Loss of TMEM16A causes a defect in epithelial Ca2+ dependent chloride transport. J Biol Chem 284:28698–28703

    Article  PubMed  CAS  Google Scholar 

  37. Paradiso AM, Ribeiro CM, Boucher RC (2001) Polarized signaling via purinoceptors in normal and cystic fibrosis airway epithelia. J Gen Physiol 117:53–68

    Article  PubMed  CAS  Google Scholar 

  38. Pashuck TD, Franz SE, Altman MK, Wasserfall CH, Atkinson MA, Wronski TJ, Flotte TR, Stalvey MS (2009) Murine model for cystic fibrosis bone disease demonstrates osteopenia and sex-related differences in bone formation. Pediatr Res 65:311–316

    Article  PubMed  Google Scholar 

  39. Penmatsa H, Zhang W, Yarlagadda S, Li C, Conoley VG, Yue J, Bahouth SW, Buddington RK, Zhang G, Nelson DJ, Sonecha MD, Manganiello V, Wine JJ, Naren AP (2010) Compartmentalized cAMP at the plasma membrane clusters PDE3A and CFTR into microdomains. Mol Biol Cell 21:1097–1100

    Article  PubMed  CAS  Google Scholar 

  40. Qu Z, Hartzell HC (2000) Anion permeation in Ca2+-activated Cl- channels. J Gen Physiol 116:825–844

    Article  PubMed  CAS  Google Scholar 

  41. Qu Z, Hartzell HC (2001) Functional geometry of the permeation pathway of Ca2+-activated Cl-channels inferred from analysis of voltage-dependent block. J Biol Chem 276:18423–18429

    Article  PubMed  CAS  Google Scholar 

  42. Rock JR, O’Neal WK, Gabriel SE, Randell SH, Harfe BD, Boucher RC, Grubb BR (2009) Transmembrane protein 16A (TMEM16A) is a Ca2+ regulated Cl- -secretory channel in mouse airways. J Biol Chem 284:14875–14880

    Article  PubMed  CAS  Google Scholar 

  43. Schreiber R, Uliyakina I, Kongsuphol P, Warth R, Mirza M, Martins JR, Kunzelmann K (2010) Expression and function of epithelial anoctamins. J Biol Chem 285:7838–7845

    Article  PubMed  CAS  Google Scholar 

  44. Schroeder BC, Cheng T, Jan YN, Jan LY (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134:1019–1029

    Article  PubMed  CAS  Google Scholar 

  45. Treharne KJ, Xu Z, Chen J-H, Best OG, Cassidy D, Gruenert DC, Hegyi P, Gray L, Sheppard DN, Kunzelmann K, Mehta A (2009) Inhibition of protein kinase CK2 closes the CFTR Cl- channel, but has no effect on the cystic fibrosis mutant F508-CFTR. Cell Physiol Biochem 24:347–360

    Article  PubMed  CAS  Google Scholar 

  46. Van der Wijk T, De Jonge HR, Tilly BC (1999) Osmotic cell swelling-induced ATP release mediates the activation of extracellular signal-regulated protein kinase (Erk)-1/2 but not the activation of osmo-sensitive anion channels. Biochem J 343(Pt 3):579–586

    Article  PubMed  Google Scholar 

  47. Wei L, Vankeerberghen A, Cuppens H, Eggermont J, Cassiman JJ, Droogmans G, Nilius B (1999) Interaction between calcium-activated chloride channels and the cystic fibrosis transmembrane conductance regulator. Pflugers Arch 438:635–641

    Article  PubMed  CAS  Google Scholar 

  48. Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the support by DFG SFB699A7, Mukoviszidose e.V. (Projekt-Nr. S02/10) and TargetScreen2 (EU-FP6-2005-LH-037365).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Kunzelmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kongsuphol, P., Schreiber, R., Kraidith, K. et al. CFTR induces extracellular acid sensing in Xenopus oocytes which activates endogenous Ca2+-activated Cl- conductance. Pflugers Arch - Eur J Physiol 462, 479–487 (2011). https://doi.org/10.1007/s00424-011-0983-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-0983-9

Keywords

Navigation