Skip to main content

Advertisement

Log in

A comprehensive analysis of gene expression profiles in distal parts of the mouse renal tubule

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The distal parts of the renal tubule play a critical role in maintaining homeostasis of extracellular fluids. In this review, we present an in-depth analysis of microarray-based gene expression profiles available for microdissected mouse distal nephron segments, i.e., the distal convoluted tubule (DCT) and the connecting tubule (CNT), and for the cortical portion of the collecting duct (CCD; Zuber et al., Proc Natl Acad Sci USA 106:16523–16528, 2009). Classification of expressed transcripts in 14 major functional gene categories demonstrated that all principal proteins involved in maintaining the salt and water balance are represented by highly abundant transcripts. However, a significant number of transcripts belonging, for instance, to categories of G-protein-coupled receptors or serine/threonine kinases exhibit high expression levels but remain unassigned to a specific renal function. We also established a list of genes differentially expressed between the DCT/CNT and the CCD. This list is enriched by genes related to segment-specific transport functions and by transcription factors directing the development of the distal nephron or collecting ducts. Collectively, this in silico analysis provides comprehensive information about relative abundance and tissue specificity of the DCT/CNT and the CCD expressed transcripts and identifies new candidate genes for renal homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kahle KT, Wilson FH, Lalioti M, Toka H, Qin H, Lifton RP (2004) WNK kinases: molecular regulators of integrated epithelial ion transport. Curr Opin Nephrol Hypertens 13:557–562

    Article  CAS  Google Scholar 

  2. Meij IC, Koenderink JB, van Bokhoven H, Assink KF, Groenestege WT, de Pont JJ, Bindels RJ, Monnens LA, van den Heuvel LP, Knoers NV (2000) Dominant isolated renal magnesium loss is caused by misrouting of the Na(+),K(+)-ATPase gamma-subunit. Nat Genet 26:265–266

    Article  CAS  Google Scholar 

  3. Scholl UI, Choi M, Liu T, Ramaekers VT, Hausler MG, Grimmer J, Tobe SW, Farhi A, Nelson-Williams C, Lifton RP (2009) Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci USA 106:5842–5847

    Article  CAS  Google Scholar 

  4. Glaudemans B, van der Wijst J, Scola RH, Lorenzoni PJ, Heister A, van der Kemp AW, Knoers NV, Hoenderop JG, Bindels RJ (2009) A missense mutation in the Kv1.1 voltage-gated potassium channel-encoding gene KCNA1 is linked to human autosomal dominant hypomagnesemia. J Clin Invest 119:936–942

    Article  CAS  Google Scholar 

  5. Groenestege WM, Thebault S, van der Wijst J, van den Berg D, Janssen R, Tejpar S, van den Heuvel LP, van Cutsem E, Hoenderop JG, Knoers NV, Bindels RJ (2007) Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J Clin Invest 117:2260–2267

    Article  CAS  Google Scholar 

  6. Robert-Nicoud M, Flahaut M, Elalouf JM, Nicod M, Salinas M, Bens M, Doucet A, Wincker P, Artiguenave F, Horisberger JD, Vandewalle A, Rossier BC, Firsov D (2001) Transcriptome of a mouse kidney cortical collecting duct cell line: effects of aldosterone and vasopressin. Proc Natl Acad Sci USA 98:2712–2716

    Article  CAS  Google Scholar 

  7. Fakitsas P, Adam G, Daidie D, van Bemmelen MX, Fouladkou F, Patrignani A, Wagner U, Warth R, Camargo SM, Staub O, Verrey F (2007) Early aldosterone-induced gene product regulates the epithelial sodium channel by deubiquitylation. J Am Soc Nephrol 18:1084–1092

    Article  CAS  Google Scholar 

  8. Nielsen J, Hoffert JD, Knepper MA, Agre P, Nielsen S, Fenton RA (2008) Proteomic analysis of lithium-induced nephrogenic diabetes insipidus: mechanisms for aquaporin 2 down-regulation and cellular proliferation. Proc Natl Acad Sci USA 105:3634–3639

    Article  CAS  Google Scholar 

  9. Hoffert JD, Pisitkun T, Wang G, Shen RF, Knepper MA (2006) Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci USA 103:7159–7164

    Article  CAS  Google Scholar 

  10. Zuber AM, Centeno G, Pradervand S, Nikolaeva S, Maquelin L, Cardinaux L, Bonny O, Firsov D (2009) Molecular clock is involved in predictive circadian adjustment of renal function. Proc Natl Acad Sci USA 106:16523–16528

    Article  CAS  Google Scholar 

  11. Uawithya P, Pisitkun T, Ruttenberg BE, Knepper MA (2008) Transcriptional profiling of native inner medullary collecting duct cells from rat kidney. Physiol Genomics 32:229–253

    CAS  Google Scholar 

  12. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  Google Scholar 

  13. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517

    Article  CAS  Google Scholar 

  14. Ueland J, Yuan A, Marlier A, Gallagher AR, Karihaloo A (2009) A novel role for the chemokine receptor Cxcr4 in kidney morphogenesis: an in vitro study. Dev Dyn 238:1083–1091

    Article  CAS  Google Scholar 

  15. Borgatti R, Marelli S, Bernardini L, Novelli A, Cavallini A, Tonelli A, Bassi MT, Dallapiccola B (2009) Bilateral frontoparietal polymicrogyria (BFPP) syndrome secondary to a 16q12.1-q21 chromosome deletion involving GPR56 gene. Clin Genet 76:573–576

    Article  Google Scholar 

  16. Robbins MJ, Michalovich D, Hill J, Calver AR, Medhurst AD, Gloger I, Sims M, Middlemiss DN, Pangalos MN (2000) Molecular cloning and characterization of two novel retinoic acid-inducible orphan G-protein-coupled receptors (GPRC5B and GPRC5C). Genomics 67:8–18

    Article  CAS  Google Scholar 

  17. He W, Miao FJ, Lin DC, Schwandner RT, Wang Z, Gao J, Chen JL, Tian H, Ling L (2004) Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429:188–193

    Article  CAS  Google Scholar 

  18. Packer RK, Curry CA, Brown KM (1995) Urinary organic anion excretion in response to dietary acid and base loading. J Am Soc Nephrol 5:1624–1629

    CAS  Google Scholar 

  19. van der Wijst J, Hoenderop JG, Bindels RJ (2009) Epithelial Mg2+ channel TRPM6: insight into the molecular regulation. Magnes Res 22:127–132

    Google Scholar 

  20. Roberts EM, Newson MJ, Pope GR, Landgraf R, Lolait SJ, O'Carroll AM (2009) Abnormal fluid homeostasis in apelin receptor knockout mice. J Endocrinol 202:453–462

    Article  CAS  Google Scholar 

  21. Chabardes D, Firsov D, Aarab L, Clabecq A, Bellanger AC, Siaume-Perez S, Elalouf JM (1996) Localization of mRNAs encoding Ca2 +-inhibitable adenylyl cyclases along the renal tubule. Functional consequences for regulation of the cAMP content. J Biol Chem 271:19264–19271

    Article  CAS  Google Scholar 

  22. Cumbay MG, Watts VJ (2005) Galphaq potentiation of adenylate cyclase type 9 activity through a Ca2+/calmodulin-dependent pathway. Biochem Pharmacol 69:1247–1256

    Article  CAS  Google Scholar 

  23. Takeda S, Lin CT, Morgano PG, McIntyre SJ, Dousa TP (1991) High activity of low-Michaelis–Menten constant 3′,5′-cyclic adenosine monophosphate-phosphodiesterase isozymes in renal inner medulla of mice with hereditary nephrogenic diabetes insipidus. Endocrinology 129:287–294

    Article  CAS  Google Scholar 

  24. Rinehart J, Kahle KT, de Los Heros P, Vazquez N, Meade P, Wilson FH, Hebert SC, Gimenez I, Gamba G, Lifton RP (2005) WNK3 kinase is a positive regulator of NKCC2 and NCC, renal cation-Cl- cotransporters required for normal blood pressure homeostasis. Proc Natl Acad Sci USA 102:16777–16782

    Article  CAS  Google Scholar 

  25. Gattineni J, Bates C, Twombley K, Dwarakanath V, Robinson ML, Goetz R, Mohammadi M, Baum M (2009) FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol 297:F282–F291

    Article  CAS  Google Scholar 

  26. Lea JP, Sands JM, McMahon SJ, Tumlin JA (1994) Evidence that the inhibition of Na+/K(+)-ATPase activity by FK506 involves calcineurin. Kidney Int 46:647–652

    Article  CAS  Google Scholar 

  27. Jo I, Ward DT, Baum MA, Scott JD, Coghlan VM, Hammond TG, Harris HW (2001) AQP2 is a substrate for endogenous PP2B activity within an inner medullary AKAP-signaling complex. Am J Physiol Renal Physiol 281:F958–F965

    CAS  Google Scholar 

  28. Zhang Y, Lin DH, Wang ZJ, Jin Y, Yang B, Wang WH (2008) K restriction inhibits protein phosphatase 2B (PP2B) and suppression of PP2B decreases ROMK channel activity in the CCD. Am J Physiol Cell Physiol 294:C765–C773

    Article  CAS  Google Scholar 

  29. Mohebbi N, Mihailova M, Wagner CA (2009) The calcineurin inhibitor FK506 (tacrolimus) is associated with transient metabolic acidosis and altered expression of renal acid–base transport proteins. Am J Physiol Renal Physiol 297:F499–F509

    Article  CAS  Google Scholar 

  30. Wei Y, Bloom P, Gu R, Wang W (2000) Protein-tyrosine phosphatase reduces the number of apical small conductance K+ channels in the rat cortical collecting duct. J Biol Chem 275:20502–20507

    Article  CAS  Google Scholar 

  31. Henn V, Edemir B, Stefan E, Wiesner B, Lorenz D, Theilig F, Schmitt R, Vossebein L, Tamma G, Beyermann M, Krause E, Herberg FW, Valenti G, Bachmann S, Rosenthal W, Klussmann E (2004) Identification of a novel A-kinase anchoring protein 18 isoform and evidence for its role in the vasopressin-induced aquaporin-2 shuttle in renal principal cells. J Biol Chem 279:26654–26665

    Article  CAS  Google Scholar 

  32. Okutsu R, Rai T, Kikuchi A, Ohno M, Uchida K, Sasaki S, Uchida S (2008) AKAP220 colocalizes with AQP2 in the inner medullary collecting ducts. Kidney Int 74:1429–1433

    Article  CAS  Google Scholar 

  33. Bengrine A, Li J, Awayda MS (2007) The A-kinase anchoring protein 15 regulates feedback inhibition of the epithelial Na+ channel. FASEB J 21:1189–1201

    Article  CAS  Google Scholar 

  34. Gkika D, Topala CN, Chang Q, Picard N, Thebault S, Houillier P, Hoenderop JG, Bindels RJ (2006) Tissue kallikrein stimulates Ca(2+) reabsorption via PKC-dependent plasma membrane accumulation of TRPV5. EMBO J 25:4707–4716

    Article  CAS  Google Scholar 

  35. van Balkom BW, Savelkoul PJ, Markovich D, Hofman E, Nielsen S, van der Sluijs P, Deen PM (2002) The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin-2 water channel. J Biol Chem 277:41473–41479

    Article  Google Scholar 

  36. Lin D, Sterling H, Lerea KM, Giebisch G, Wang WH (2002) Protein kinase C (PKC)-induced phosphorylation of ROMK1 is essential for the surface expression of ROMK1 channels. J Biol Chem 277:44278–44284

    Article  CAS  Google Scholar 

  37. Stockand JD, Bao HF, Schenck J, Malik B, Middleton P, Schlanger LE, Eaton DC (2000) Differential effects of protein kinase C on the levels of epithelial Na+ channel subunit proteins. J Biol Chem 275:25760–25765

    Article  CAS  Google Scholar 

  38. Irarrazabal CE, Gallazzini M, Schnetz MP, Kunin M, Simons BL, Williams CK, Burg MB, Ferraris JD (2009) Phospholipase C-gamma1 is involved in signaling the activation by high NaCl of the osmoprotective transcription factor TonEBP/OREBP. Proc Natl Acad Sci USA 107:906–911

    Article  Google Scholar 

  39. Donaldson JG (2009) Phospholipase D in endocytosis and endosomal recycling pathways. Biochim Biophys Acta 1791:845–849

    CAS  Google Scholar 

  40. van de Graaf SF, Chang Q, Mensenkamp AR, Hoenderop JG, Bindels RJ (2006) Direct interaction with Rab11a targets the epithelial Ca2+ channels TRPV5 and TRPV6 to the plasma membrane. Mol Cell Biol 26:303–312

    Article  Google Scholar 

  41. Curtis LM, Gluck S (2005) Distribution of Rab GTPases in mouse kidney and comparison with vacuolar H+-ATPase. Nephron Physiol 100:p31–p42

    Article  CAS  Google Scholar 

  42. Saxena SK, Kaur S (2006) Regulation of epithelial ion channels by Rab GTPases. Biochem Biophys Res Commun 351:582–587

    Article  CAS  Google Scholar 

  43. El-Annan J, Brown D, Breton S, Bourgoin S, Ausiello DA, Marshansky V (2004) Differential expression and targeting of endogenous Arf1 and Arf6 small GTPases in kidney epithelial cells in situ. Am J Physiol Cell Physiol 286:C768–C778

    Article  CAS  Google Scholar 

  44. Madziva MT, Birnbaumer M (2006) A role for ADP-ribosylation factor 6 in the processing of G-protein-coupled receptors. J Biol Chem 281:12178–12186

    Article  CAS  Google Scholar 

  45. Tamma G, Procino G, Strafino A, Bononi E, Meyer G, Paulmichl M, Formoso V, Svelto M, Valenti G (2007) Hypotonicity induces aquaporin-2 internalization and cytosol-to-membrane translocation of ICln in renal cells. Endocrinology 148:1118–1130

    Article  CAS  Google Scholar 

  46. Klussmann E, Tamma G, Lorenz D, Wiesner B, Maric K, Hofmann F, Aktories K, Valenti G, Rosenthal W (2001) An inhibitory role of Rho in the vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem 276:20451–20457

    Article  CAS  Google Scholar 

  47. Ko B, Joshi LM, Cooke LL, Vazquez N, Musch MW, Hebert SC, Gamba G, Hoover RS (2007) Phorbol ester stimulation of RasGRP1 regulates the sodium-chloride cotransporter by a PKC-independent pathway. Proc Natl Acad Sci USA 104:20120–20125

    Article  CAS  Google Scholar 

  48. Laroche-Joubert N, Marsy S, Luriau S, Imbert-Teboul M, Doucet A (2003) Mechanism of activation of ERK and H-K-ATPase by isoproterenol in rat cortical collecting duct. Am J Physiol Renal Physiol 284:F948–F954

    CAS  Google Scholar 

  49. Mastroberardino L, Spindler B, Forster I, Loffing J, Assandri R, May A, Verrey F (1998) Ras pathway activates epithelial Na+ channel and decreases its surface expression in Xenopus oocytes. Mol Biol Cell 9:3417–3427

    CAS  Google Scholar 

  50. Noda Y, Sasaki S (2006) Regulation of aquaporin-2 trafficking and its binding protein complex. Biochim Biophys Acta 1758:1117–1125

    Article  CAS  Google Scholar 

  51. Mistry AC, Mallick R, Klein JD, Weimbs T, Sands JM, Frohlich O (2009) Syntaxin specificity of aquaporins in the inner medullary collecting duct. Am J Physiol Renal Physiol 297:F292–F300

    Article  CAS  Google Scholar 

  52. Barile M, Pisitkun T, Yu MJ, Chou CL, Verbalis MJ, Shen RF, Knepper MA (2005) Large scale protein identification in intracellular aquaporin-2 vesicles from renal inner medullary collecting duct. Mol Cell Proteomics 4:1095–1106

    Article  CAS  Google Scholar 

  53. Wang CC, Ng CP, Shi H, Liew HC, Guo K, Zeng Q, Hong W (2010) A role for VAMP8/endobrevin in surface deployment of the water channel aquaporin 2. Mol Cell Biol 30:333–343

    Article  Google Scholar 

  54. Zeng WZ, Babich V, Ortega B, Quigley R, White SJ, Welling PA, Huang CL (2002) Evidence for endocytosis of ROMK potassium channel via clathrin-coated vesicles. Am J Physiol Renal Physiol 283:F630–F639

    Google Scholar 

  55. Forgac M, Cantley L, Wiedenmann B, Altstiel L, Branton D (1983) Clathrin-coated vesicles contain an ATP-dependent proton pump. Proc Natl Acad Sci USA 80:1300–1303

    Article  CAS  Google Scholar 

  56. Shimkets RA, Lifton RP, Canessa CM (1997) The activity of the epithelial sodium channel is regulated by clathrin-mediated endocytosis. J Biol Chem 272:25537–25541

    Article  CAS  Google Scholar 

  57. Sun TX, Van Hoek A, Huang Y, Bouley R, McLaughlin M, Brown D (2002) Aquaporin-2 localization in clathrin-coated pits: inhibition of endocytosis by dominant-negative dynamin. Am J Physiol Renal Physiol 282:F998–F1011

    CAS  Google Scholar 

  58. van de Graaf SF, Rescher U, Hoenderop JG, Verkaart S, Bindels RJ, Gerke V (2008) TRPV5 is internalized via clathrin-dependent endocytosis to enter a Ca2+ controlled recycling pathway. J Biol Chem 283:4077–4086

    Article  Google Scholar 

  59. Harel A, Wu F, Mattson MP, Morris CM, Yao PJ (2008) Evidence for CALM in directing VAMP2 trafficking. Traffic 9:417–429

    Article  CAS  Google Scholar 

  60. Michael L, Sweeney DE, Davies JA (2005) A role for microfilament-based contraction in branching morphogenesis of the ureteric bud. Kidney Int 68:2010–2018

    Article  CAS  Google Scholar 

  61. Mazzochi C, Bubien JK, Smith PR, Benos DJ (2006) The carboxyl terminus of the alpha-subunit of the amiloride-sensitive epithelial sodium channel binds to F-actin. J Biol Chem 281:6528–6538

    Article  CAS  Google Scholar 

  62. Sabolic I, Katsura T, Verbavatz JM, Brown D (1995) The AQP2 water channel: effect of vasopressin treatment, microtubule disruption, and distribution in neonatal rats. J Membr Biol 143:165–175

    Article  CAS  Google Scholar 

  63. Morrow JS, Cianci CD, Ardito T, Mann AS, Kashgarian M (1989) Ankyrin links fodrin to the alpha subunit of Na, K-ATPase in Madin-Darby canine kidney cells and in intact renal tubule cells. J Cell Biol 108:455–465

    Article  CAS  Google Scholar 

  64. Wei Y, Wang WH (2002) Role of the cytoskeleton in mediating effect of vasopressin and herbimycin A on secretory K channels in CCD. Am J Physiol Renal Physiol 282:F680–F686

    CAS  Google Scholar 

  65. Schwiebert EM, Mills JW, Stanton BA (1994) Actin-based cytoskeleton regulates a chloride channel and cell volume in a renal cortical collecting duct cell line. J Biol Chem 269:7081–7089

    CAS  Google Scholar 

  66. Moyer BD, Denton J, Karlson KH, Reynolds D, Wang S, Mickle JE, Milewski M, Cutting GR, Guggino WB, Li M, Stanton BA (1999) A PDZ-interacting domain in CFTR is an apical membrane polarization signal. J Clin Invest 104:1353–1361

    Article  CAS  Google Scholar 

  67. Kraemer DM, Strizek B, Meyer HE, Marcus K, Drenckhahn D (2003) Kidney Na+,K(+)-ATPase is associated with moesin. Eur J Cell Biol 82:87–92

    Article  CAS  Google Scholar 

  68. Tamma G, Klussmann E, Oehlke J, Krause E, Rosenthal W, Svelto M, Valenti G (2005) Actin remodeling requires ERM function to facilitate AQP2 apical targeting. J Cell Sci 118:3623–3630

    Article  CAS  Google Scholar 

  69. Ameen N, Apodaca G (2007) Defective CFTR apical endocytosis and enterocyte brush border in myosin VI-deficient mice. Traffic 8:998–1006

    Article  CAS  Google Scholar 

  70. Chabardes-Garonne D, Mejean A, Aude JC, Cheval L, Di Stefano A, Gaillard MC, Imbert-Teboul M, Wittner M, Balian C, Anthouard V, Robert C, Segurens B, Wincker P, Weissenbach J, Doucet A, Elalouf JM (2003) A panoramic view of gene expression in the human kidney. Proc Natl Acad Sci USA 100:13710–13715

    Article  CAS  Google Scholar 

  71. Schroeder BC, Cheng T, Jan YN, Jan LY (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134:1019–1029

    Article  CAS  Google Scholar 

  72. Preitner F, Bonny O, Laverriere A, Rotman S, Firsov D, Da Costa A, Metref S, Thorens B (2009) Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proc Natl Acad Sci USA 106:15501–15506

    Article  CAS  Google Scholar 

  73. Patterson LT, Potter SS (2003) Hox genes and kidney patterning. Curr Opin Nephrol Hypertens 12:19–23

    Article  CAS  Google Scholar 

  74. Patterson LT, Potter SS (2004) Atlas of Hox gene expression in the developing kidney. Dev Dyn 229:771–779

    Article  CAS  Google Scholar 

  75. Yang CL, Angell J, Mitchell R, Ellison DH (2003) WNK kinases regulate thiazide-sensitive Na-Cl cotransport. J Clin Invest 111:1039–1045

    CAS  Google Scholar 

  76. Bibert S, Hess SK, Firsov D, Thorens B, Geering K, Horisberger JD, Bonny O (2009) Mouse GLUT9: evidences for a urate uniporter. Am J Physiol Renal Physiol 297:F612–F619

    Article  CAS  Google Scholar 

  77. van de Graaf SF, Bindels RJ, Hoenderop JG (2007) Physiology of epithelial Ca2+ and Mg2+ transport. Rev Physiol Biochem Pharmacol 158:77–160

    Article  Google Scholar 

  78. Kuro-O M (2009) Klotho. Pflugers Arch 4:4

    Google Scholar 

  79. King LM, Gainer JV, David GL, Dai D, Goldstein JA, Brown NJ, Zeldin DC, Wu SN, Zhang Y, Gardner CO, Chen Q, Li Y, Wang GL, Gao PJ, Zhu DL, Polonikov AV, Ivanov VP, Solodilova MA, Khoroshaya IV, Kozhuhov MA, Ivakin VE, Katargina LN, Kolesnikova OE (2005) Single nucleotide polymorphisms in the CYP2J2 and CYP2C8 genes and the risk of hypertension. Evidence for association of polymorphisms in CYP2J2 and susceptibility to essential hypertension. A common polymorphism G-50 T in cytochrome P450 2 J2 gene is associated with increased risk of essential hypertension in a Russian population. Pharmacogenet Genomics 15:7–13

    Article  CAS  Google Scholar 

  80. Wu SN, Zhang Y, Gardner CO, Chen Q, Li Y, Wang GL, Gao PJ, Zhu DL, Polonikov AV, Ivanov VP, Solodilova MA, Khoroshaya IV, Kozhuhov MA, Ivakin VE, Katargina LN, Kolesnikova OE (2007) Evidence for association of polymorphisms in CYP2J2 and susceptibility to essential hypertension. A common polymorphism G-50T in cytochrome P450 2J2 gene is associated with increased risk of essential hypertension in a Russian population. Ann Hum Genet 71:519–525

    Article  Google Scholar 

  81. Polonikov AV, Ivanov VP, Solodilova MA, Khoroshaya IV, Kozhuhov MA, Ivakin VE, Katargina LN, Kolesnikova OE (2008) A common polymorphism G-50T in cytochrome P450 2J2 gene is associated with increased risk of essential hypertension in a Russian population. Dis Markers 24:119–126

    CAS  Google Scholar 

  82. Wang S, Meng F, Xu J, Gu Y (2009) Effects of lipids on ENaC activity in cultured mouse cortical collecting duct cells. J Membr Biol 227:77–85

    Article  CAS  Google Scholar 

  83. Grillet N, Xiong W, Reynolds A, Kazmierczak P, Sato T, Lillo C, Dumont RA, Hintermann E, Sczaniecka A, Schwander M, Williams D, Kachar B, Gillespie PG, Muller U (2009) Harmonin mutations cause mechanotransduction defects in cochlear hair cells. Neuron 62:375–387

    Article  CAS  Google Scholar 

  84. Ullrich S (2008) Glucose-induced insulin secretion: is the small G-protein Rab27A the mediator of the K(ATP) channel-independent effect? J Physiol 586:5291

    Article  CAS  Google Scholar 

  85. Monk KR, Naylor SG, Glenn TD, Mercurio S, Perlin JR, Dominguez C, Moens CB, Talbot WS (2009) A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science 325:1402–1405

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation Research Grant 3100A0-117824 (DF) and a bridge grant for young investigator from the Faculty of Biology and Medicine of the University of Lausanne and the Prof. Placide Nicod Foundation (OB). We would like to thank Dr. Hannes Richter from the Lausanne Genomic Technologies facility for the qPCR analysis of GPCRs expression levels.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olivier Bonny or Dmitri Firsov.

Additional information

Olivier Bonny and Dmitri Firsov have equally contributed to the study.

ELECTRONIC SUPPLEMENTARY MATERIAL

Below is the link to the electronic supplementary material.

Table S1

(XLS 30.5 kb)

Table S2

(XLS 61.5 kb)

Table S3

(XLS 32.5 kb)

Table S4

(XLS 61.5 kb)

Table S5

(XLS 24.5 kb)

Table S6

(XLS 46.5 kb)

Table S7

(XLS 64.5 kb)

Table S8

(XLS 263 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradervand, S., Zuber Mercier, A., Centeno, G. et al. A comprehensive analysis of gene expression profiles in distal parts of the mouse renal tubule. Pflugers Arch - Eur J Physiol 460, 925–952 (2010). https://doi.org/10.1007/s00424-010-0863-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0863-8

Keywords

Navigation