Skip to main content
Log in

TRPM3 channels provide a regulated influx pathway for zinc in pancreatic beta cells

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Zinc is stored in insulin-containing dense core vesicles of pancreatic β-cells where it forms crystals together with insulin and calcium ions. Zinc ions are therefore released together with insulin upon exocytosis of these vesicles. Consequently, pancreatic β-cells need to take up large amounts of zinc from the extracellular space across their plasma membrane. The pathways for zinc uptake are only partially understood. TRPM3 channels are present in pancreatic β-cells and can be activated by the endogenous steroid pregnenolone sulfate. We demonstrate here that recombinant TRPM3 channels are highly permeable for many divalent cations, in particular also for zinc ions. Importantly, TRPM3 channels endogenously expressed in pancreatic β-cells are also highly permeable for zinc ions. Using FluoZin3 to image changes of the intracellular zinc concentration, we show that pancreatic β-cells take up zinc through TRPM3 channels even when extracellular zinc concentrations are low and physiological levels of calcium and magnesium are present. Activation of TRPM3 channels also leads to depolarization of β-cells and to additional zinc influx through voltage-gated calcium channels. Our data establish that TRPM3 channels constitute a regulated entry pathway for zinc ions in pancreatic β-cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42

    Google Scholar 

  2. Asfari M, Janjic D, Meda P, Li G, Halban PA, Wollheim CB (1992) Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology 130:167–178

    Article  PubMed  CAS  Google Scholar 

  3. Bertram R, Pernarowski M (1998) Glucose diffusion in pancreatic islets of Langerhans. Biophys J 74:1722–1731

    Article  PubMed  CAS  Google Scholar 

  4. Chausmer AB (1998) Zinc, insulin and diabetes. J Am Coll Nutr 17:109–115

    PubMed  CAS  Google Scholar 

  5. Chimienti F, Devergnas S, Favier A, Seve M (2004) Identification and cloning of a β-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53:2330–2337

    Article  PubMed  CAS  Google Scholar 

  6. Dean PM (1973) Ultrastructural morphometry of the pancreatic β-cell. Diabetologia 9:115–119

    Article  PubMed  CAS  Google Scholar 

  7. Dunn MF (2005) Zinc–ligand interactions modulate assembly and stability of the insulin hexamer—a review. Biometals 18:295–303

    Article  PubMed  CAS  Google Scholar 

  8. Fatt P, Ginsborg BL (1958) The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol 142:516–543

    PubMed  CAS  Google Scholar 

  9. Foster MC, Leapman RD, Li MX, Atwater I (1993) Elemental composition of secretory granules in pancreatic islets of Langerhans. Biophys J 64:525–532

    Article  PubMed  CAS  Google Scholar 

  10. Frederickson CJ, Giblin LJ, Krężel A, McAdoo DJ, Muelle RN, Zeng Y, Balaji RV, Masalha R, Thompson RB, Fierke CA, Sarvey JM, de Valdenebro M, Prough DS, Zornow MH (2006) Concentrations of extracellular free zinc (pZn)e in the central nervous system during simple anesthetization, ischemia and reperfusion. Exp Neurol 198:285–293

    Article  PubMed  CAS  Google Scholar 

  11. Frederickson CJ, Koh J-Y, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

    Article  PubMed  CAS  Google Scholar 

  12. Gee KR, Zhou Z-L, Qian W-J, Kennedy R (2002) Detection and imaging of zinc secretion from pancreatic β-cells using a new fluorescent zinc indicator. J Am Chem Soc 124:776–778

    Article  PubMed  CAS  Google Scholar 

  13. Grimm C, Kraft R, Sauerbruch S, Schultz G, Harteneck C (2003) Molecular and functional characterization of the melastatin-related cation channel TRPM3. J Biol Chem 278:21493–21501

    Article  PubMed  CAS  Google Scholar 

  14. Gyulkhandanyan AV, Lee SC, Bikopoulos G, Dai F, Wheeler MB (2006) The Zn2+-transporting pathways in pancreatic β-cells: a role for the L-type voltage-gated Ca2+ channel. J Biol Chem 281:9361–9372

    Article  PubMed  CAS  Google Scholar 

  15. Hille B (2001) Ion channels of excitable membranes. 3rd ed. Sinauer, Sunderland

    Google Scholar 

  16. Hu H, Bandell M, Petrus MJ, Zhu MX, Patapoutian A (2009) Zinc activates damage-sensing TRPA1 ion channels. Nat Chem Biol 5:183–190

    Article  PubMed  CAS  Google Scholar 

  17. Hutton JC, Penn EJ, Peshavaria M (1983) Low-molecular-weight constituents of isolated insulin-secretory granules. Bivalent cations, adenine nucleotides and inorganic phosphate. Biochem J 210:297–305

    PubMed  CAS  Google Scholar 

  18. Inoue K, Branigan D, Xiong Z-G (2010) Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels. J Biol Chem 285:7430–7439

    Article  PubMed  CAS  Google Scholar 

  19. Kay AR (2004) Detecting and minimizing zinc contamination in physiological solutions. BMC Physiol 4:4

    Article  PubMed  Google Scholar 

  20. Komatsu K, Kikuchi K, Kojima H, Urano Y, Nagano T (2005) Selective zinc sensor molecules with various affinities for Zn2+, revealing dynamics and regional distribution of synaptically released Zn2+ in hippocampal slices. J Am Chem Soc 127:10197–10204

    Article  PubMed  CAS  Google Scholar 

  21. Lee N, Chen J, Sun L, Wu S, Gray KR, Rich A, Huang M, Lin J-H, Feder JN, Janovitz EB, Levesque PC, Blanar MA (2003) Expression and characterization of human transient receptor potential melastatin 3 (hTRPM3). J Biol Chem 278:20890–20897

    Article  PubMed  CAS  Google Scholar 

  22. Lemaire K, Ravier MA, Schraenen A, Creemers JWM, de Plas RV, Granvik M, Lommel LV, Waelkens E, Chimienti F, Rutter GA, Gilon P, in't Veld PA, Schuit FC (2009) Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc Natl Acad Sci USA 106:14872–14877

    Article  PubMed  Google Scholar 

  23. Li M, Jiang J, Yue L (2006) Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol 127:525–537

    Article  PubMed  CAS  Google Scholar 

  24. Monteilh-Zoller MK, Hermosura MC, Nadler MJS, Scharenberg AM, Penner R, Fleig A (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 121:49–60

    Article  PubMed  CAS  Google Scholar 

  25. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A (2001) LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411:590–595

    Article  PubMed  CAS  Google Scholar 

  26. Nicolson TJ, Bellomo EA, Wijesekara N, Loder MK, Baldwin JM, Gyulkhandanyan AV, Koshkin V, Tarasov AI, Carzaniga R, Kronenberger K, Taneja TK, da Silva Xavier G, Libert S, Froguel P, Scharfmann R, Stetsyuk V, Ravassard P, Parker H, Gribble FM, Reimann F, Sladek R, Hughes SJ, Johnson PRV, Masseboeuf M, Burcelin R, Baldwin SA, Liu M, Lara-Lemus R, Arvan P, Schuit FC, Wheeler MB, Chimienti F, Rutter GA (2009) Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 58:2070–2083

    Article  PubMed  CAS  Google Scholar 

  27. Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217

    Article  PubMed  CAS  Google Scholar 

  28. Oberwinkler J, Lis A, Giehl KM, Flockerzi V, Philipp SE (2005) Alternative splicing switches the divalent cation selectivity of TRPM3 channels. J Biol Chem 280:22540–22548

    Article  PubMed  CAS  Google Scholar 

  29. Oberwinkler J, Philipp SE (2007) TRPM3. Handb Exp Pharmacol 179:253–267

    Article  PubMed  CAS  Google Scholar 

  30. Owsianik G, Talavera K, Voets T, Nilius B (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol 68:685–717

    Article  PubMed  CAS  Google Scholar 

  31. de Peretti E, Mappus E (1983) Pattern of plasma pregnenolone sulfate levels in humans from birth to adulthood. J Clin Endocrinol Metab 57:550–556

    Article  PubMed  Google Scholar 

  32. Pound LD, Sarkar SA, Benninger RKP, Wang Y, Suwanichkul A, Shadoan MK, Printz RL, Oeser JK, Lee CE, Piston DW, McGuinness OP, Hutton JC, Powell DR, O'Brien RM (2009) Deletion of the mouse Slc30a8 gene encoding zinc transporter-8 results in impaired insulin secretion. Biochem J 421:371–376

    Article  PubMed  CAS  Google Scholar 

  33. Priel T, Hershfinkel M (2006) Zinc influx and physiological consequences in the β-insulinoma cell line, Min6. Biochem Biophys Res Commun 346:205–212

    Article  PubMed  CAS  Google Scholar 

  34. Qian W-J, Gee KR, Kennedy RT (2003) Imaging of Zn2+ release from pancreatic β-cells at the level of single exocytotic events. Anal Chem 75:3468–3475

    Article  PubMed  CAS  Google Scholar 

  35. Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647

    Article  PubMed  CAS  Google Scholar 

  36. Robinson LK, Hurley LS (1981) Effect of maternal zinc deficiency of food restriction on rat fetal pancreas. 2. Insulin and glucagon. J Nutr 111:869–877

    PubMed  CAS  Google Scholar 

  37. Schlingmann KP, Waldegger S, Konrad M, Chubanov V, Gudermann T (2007) TRPM6 and TRPM7—gatekeepers of human magnesium metabolism. Biochim Biophys Acta 1772:813–821

    PubMed  CAS  Google Scholar 

  38. Schmitz C, Perraud A-L, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM (2003) Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114:191–200

    Article  PubMed  CAS  Google Scholar 

  39. Stokes CL, Rinzel J (1993) Diffusion of extracellular K+ can synchronize bursting oscillations in a model islet of Langerhans. Biophys J 65:597–607

    Article  PubMed  CAS  Google Scholar 

  40. Søndergaard LG, Stoltenberg M, Doering P, Flyvbjerg A, Rungby J (2006) Zinc ions in the endocrine and exocrine pancreas of zinc deficient rats. Histol Histopathol 21:619–625

    PubMed  Google Scholar 

  41. Takahashi N, Kishimoto T, Nemoto T, Kadowaki T, Kasai H (2002) Fusion pore dynamics and insulin granule exocytosis in the pancreatic islet. Science 297:1349–1352

    Article  PubMed  CAS  Google Scholar 

  42. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  PubMed  CAS  Google Scholar 

  43. Vignali S, Leiss V, Karl R, Hofmann F, Welling A (2006) Characterization of voltage-dependent sodium and calcium channels in mouse pancreatic A- and B-cells. J Physiol 572:691–706

    PubMed  CAS  Google Scholar 

  44. Wagner TFJ, Loch S, Lambert S, Straub I, Mannebach S, Mathar I, Düfer M, Lis A, Flockerzi V, Philipp SE, Oberwinkler J (2008) Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic β cells. Nat Cell Biol 10:1421–1430

    Article  PubMed  CAS  Google Scholar 

  45. Zalewski PD, Millard SH, Forbes IJ, Kapaniris O, Slavotinek A, Betts WH, Ward AD, Lincoln SF, Mahadevan I (1994) Video image analysis of labile zinc in viable pancreatic islet cells using a specific fluorescent probe for zinc. J Histochem Cytochem 42:877–884

    PubMed  CAS  Google Scholar 

  46. Zhao J, Bertoglio BA, Gee KR, Kay AR (2008) The zinc indicator FluoZin-3 is not perturbed significantly by physiological levels of calcium or magnesium. Cell Calcium 44:422–426

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sandra Plant, Melanie Portz, Heidi Löhr, and Martin Simon-Thomas for excellent technical support. We also thank Oleksandr Rizun for critically reading the manuscript and Dr. Veit Flockerzi for his support during this study. This work was financially supported by the DFG (Emmy Noether Program and GK 1326), HOMFOR, and Forschungskommission der Universität des Saarlandes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Oberwinkler.

Additional information

Thomas F.J. Wagner, Anna Drews, Sabine Loch, Florian Mohr, Sachar Lambert, and Johannes Oberwinkler are members of the Emmy Noether Research Group in the Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universitätsklinikum des Saarlandes.

Anna Drews and Sabine Loch contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, T.F.J., Drews, A., Loch, S. et al. TRPM3 channels provide a regulated influx pathway for zinc in pancreatic beta cells. Pflugers Arch - Eur J Physiol 460, 755–765 (2010). https://doi.org/10.1007/s00424-010-0838-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0838-9

Keywords

Navigation