Skip to main content
Log in

Biophysical characterisation of the persistent sodium current of the Nav1.6 neuronal sodium channel: a single-channel analysis

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Nav1.6 is the major voltage-gated sodium channel at nodes of Ranvier. This channel has been shown to produce a robust persistent inward current in whole-cell experiments. Nav1.6 plays an important role in axonal conduction and may significantly contribute to the pathophysiology of the injured nervous system through this persistent current. However, the underlying molecular mechanisms and regulation of the persistent current are not well understood. Using the whole-cell configuration of the patch-clamp technique, we investigated the Nav1.6 transient and persistent currents in HEK-293. Previous studies have shown that the persistent current depended on the content of the patch electrode. Therefore, we characterised the single-channel properties of the persistent current with an intact intracellular medium using the cell-attached configuration of the patch-clamp technique. In HEK-293 cells, the Nav1.6 persistent current recorded in the whole-cell configuration was 3–5% of the peak transient current. In single-channel recording, the ratio between peak and persistent open probability confirmed the magnitude of the persistent current observed in the whole-cell configuration. The cell-attached configuration revealed that the molecular mechanism of the whole-cell persistent current is a consequence of single Nav1.6 channels reopening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aldrich RW, Corey DP, Stevens CF (1983) A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature 306:436–441

    Article  CAS  PubMed  Google Scholar 

  2. Armstrong CM, Hille B (1998) Voltage-gated ion channels and electrical excitability. Neuron 20:371–380

    Article  CAS  PubMed  Google Scholar 

  3. Astman N, Gutnick MJ, Fleidervish IA (2006) Persistent sodium current in layer 5 neocortical neurons is primarily generated in the proximal axon. J Neurosci 26:3465–3473

    Article  CAS  PubMed  Google Scholar 

  4. Boiko T, Rasband MN, Levinson SR, Caldwell JH, Mandel G, Trimmer JS, Matthews G (2001) Compact myelin dictates the differential targeting of two sodium channel isoforms in the same axon. Neuron 30:91–104

    Article  CAS  PubMed  Google Scholar 

  5. Burbidge SA, Dale TJ, Powell AJ, Whitaker WRJ, Xie XM, Romanos MA, Clare JJ (2002) Molecular cloning, distribution and functional analysis of the NAV1.6. voltage-gated sodium channel from human brain. Brain Res Mol Brain Res 103:80–90

    Article  CAS  PubMed  Google Scholar 

  6. Caldwell JH, Schaller KL, Lasher RS, Peles E, Levinson SR (2000) Sodium channel Na(v)1.6 is localized at nodes of Ranvier, dendrites, and synapses. Proc Natl Acad Sci U S A 97:5616–5620

    Article  CAS  PubMed  Google Scholar 

  7. Carle T, Lhuillier L, Luce S, Sternberg D, Devuyst O, Fontaine B, Tabti N (2006) Gating defects of a novel Na+ channel mutant causing hypokalemic periodic paralysis. Biochem Biophys Res Commun 348:653–661

    Article  CAS  PubMed  Google Scholar 

  8. Catterall WA (1986) Molecular properties of voltage-sensitive sodium channels. Annu Rev Biochem 55:953–985

    Article  CAS  PubMed  Google Scholar 

  9. Chahine M, Bennett PB, George AL Jr, Horn R (1994) Functional expression and properties of the human skeletal muscle sodium channel. Pflügers Arch 427:136–142

    Article  CAS  PubMed  Google Scholar 

  10. Chahine M, Chatelier A, Babich O, Krupp JJ (2008) Voltage-gated sodium channels in neurological disorders. CNS Neurol Disord Drug Targets 7:144–158

    Article  CAS  PubMed  Google Scholar 

  11. Chandra R, Starmer CF, Grant AO (1998) Multiple effects of KPQ deletion mutation on gating of human cardiac Na+ channels expressed in mammalian cells. Am J Physiol 274:H1643–H1654

    CAS  PubMed  Google Scholar 

  12. Chang CC, Acharfi S, Wu MH, Chiang FT, Wang JK, Sung TC, Chahine M (2004) A novel SCN5A mutation manifests as a malignant form of long QT syndrome with perinatal onset of tachycardia/bradycardia. Cardiovasc Res 64:268–278

    Article  CAS  PubMed  Google Scholar 

  13. Chen Y, Yu FH, Sharp EM, Beacham D, Scheuer T, Catterall WA (2008) Functional properties and differential neuromodulation of Na(v)1.6 channels. Mol Cell Neurosci 38:607–615

    Article  CAS  PubMed  Google Scholar 

  14. Chen YH, Dale TJ, Romanos MA, Whitaker WR, Xie XM, Clare JJ (2000) Cloning, distribution and functional analysis of the type III sodium channel from human brain. Eur J Neurosci 12:4281–4289

    CAS  PubMed  Google Scholar 

  15. Craner MJ, Hains BC, Lo AC, Black JA, Waxman SG (2004) Co-localization of sodium channel Nav1.6 and the sodium-calcium exchanger at sites of axonal injury in the spinal cord in EAE. Brain 127:294–303

    Article  PubMed  Google Scholar 

  16. Craner MJ, Newcombe J, Black JA, Hartle C, Cuzner ML, Waxman SG (2004) Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. Proc Natl Acad Sci U S A 101:8168–8173

    Article  CAS  PubMed  Google Scholar 

  17. Crill WE (1996) Persistent sodium current in mammalian central neurons. Annu Rev Physiol 58:349–362

    Article  CAS  PubMed  Google Scholar 

  18. Dubois JM, Bergman C (1975) Late sodium current in the node of Ranvier. Pflügers Arch 357:145–148

    Article  CAS  PubMed  Google Scholar 

  19. Fozzard HA, Hanck DA (1996) Structure and function of voltage-dependent sodium channels: comparison of brain II and cardiac isoforms. Physiol Rev 76:887–926

    CAS  PubMed  Google Scholar 

  20. Gellens ME, George AL Jr, Chen LQ, Chahine M, Horn R, Barchi RL, Kallen RG (1992) Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc Natl Acad Sci U S A 89:554–558

    Article  CAS  PubMed  Google Scholar 

  21. Kaplan MR, Cho MH, Ullian EM, Isom LL, Levinson SR, Barres BA (2001) Differential control of clustering of the sodium channels Na(v)1.2 and Na(v)1.6 at developing CNS nodes of Ranvier. Neuron 30:105–119

    Article  CAS  PubMed  Google Scholar 

  22. Kay AR, Sugimori M, Llinas R (1998) Kinetic and stochastic properties of a persistent sodium current in mature guinea pig cerebellar Purkinje cells. J Neurophysiol 80:1167–1179

    CAS  PubMed  Google Scholar 

  23. Levin SI, Khaliq ZM, Aman TK, Grieco TM, Kearney JA, Raman IM, Meisler MH (2006) Impaired motor function in mice with cell-specific knockout of sodium channel Scn8a (NaV1.6) in cerebellar purkinje neurons and granule cells. J Neurophysiol 96:785–793

    Article  CAS  PubMed  Google Scholar 

  24. Magistretti J, Alonso A (1999) Biophysical properties and slow voltage-dependent inactivation of a sustained sodium current in entorhinal cortex layer-II principal neurons: a whole-cell and single-channel study. J Gen Physiol 114:491–509

    Article  CAS  PubMed  Google Scholar 

  25. Magistretti J, Ragsdale DS, Alonso A (2003) Kinetic diversity of single-channel burst openings underlying persistent Na(+) current in entorhinal cortex neurons. Biophys J 85:3019–3034

    Article  CAS  PubMed  Google Scholar 

  26. Mantegazza M, Yu FH, Powell AJ, Clare JJ, Catterall WA, Scheuer T (2005) Molecular determinants for modulation of persistent sodium current by G-protein βγ subunits. J Neurosci 25:3341–3349

    Article  CAS  PubMed  Google Scholar 

  27. Mohler PJ, Rivolta I, Napolitano C, Lemaillet G, Lambert S, Priori SG, Bennett V (2004) Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. Proc Natl Acad Sci U S A 101:17533–17538

    Article  CAS  PubMed  Google Scholar 

  28. Neumcke B, Schwarz JR, Stampfli R (1987) A comparison of sodium currents in rat and frog myelinated nerve: normal and modified sodium inactivation. J Physiol 382:175–191, 175-191

    CAS  PubMed  Google Scholar 

  29. Nilius B (1988) Modal gating behavior of cardiac sodium channels in cell-free membrane patches. Biophys J 53:857–862

    Article  CAS  PubMed  Google Scholar 

  30. Patlak JB, Ortiz M (1985) Slow currents through single sodium channels of the adult rat heart. J Gen Physiol 86:89–104

    Article  CAS  PubMed  Google Scholar 

  31. Patlak JB, Ortiz M (1986) Two modes of gating during late Na+ channel currents in frog sartorius muscle. J Gen Physiol 87:305–326

    Article  CAS  PubMed  Google Scholar 

  32. Rush AM, Dib-Hajj SD, Waxman SG (2005) Electrophysiological properties of two axonal sodium channels, Nav1.2 and Nav1.6, expressed in mouse spinal sensory neurones. J Physiol 564:803–815

    Article  CAS  PubMed  Google Scholar 

  33. Shirahata E, Iwasaki H, Takagi M, Lin C, Bennett V, Okamura Y, Hayasaka K (2006) Ankyrin-G regulates inactivation gating of the neuronal sodium channel, Nav1.6. J Neurophysiol 96:1347–1357

    Article  CAS  PubMed  Google Scholar 

  34. Smith MR, Smith RD, Plummer NW, Meisler MH, Goldin AL (1998) Functional analysis of the mouse Scn8a sodium channel. J Neurosci 18:6093–6102

    CAS  PubMed  Google Scholar 

  35. Stys PK, Waxman SG, Ransom BR (1992) Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger. J Neurosci 12:430–439

    CAS  PubMed  Google Scholar 

  36. Taddese A, Bean BP (2002) Subthreshold sodium current from rapidly inactivating sodium channels drives spontaneous firing of tuberomammillary neurons. Neuron 33:587–600

    Article  CAS  PubMed  Google Scholar 

  37. Taylor CP, Meldrum BS (1995) Na+ channels as targets for neuroprotective drugs. Trends Pharmacol Sci 16:309–316

    Article  CAS  PubMed  Google Scholar 

  38. Trudeau MM, Dalton JC, Day JW, Ranum LP, Meisler MH (2006) Heterozygosity for a protein truncation mutation of sodium channel SCN8A in a patient with cerebellar atrophy, ataxia, and mental retardation. J Med Genet 43:527–530

    Article  CAS  PubMed  Google Scholar 

  39. Undrovinas AI, Maltsev VA, Kyle JW, Silverman N, Sabbah HN (2002) Gating of the late Na+ channel in normal and failing human myocardium. J Mol Cell Cardiol 34:1477–1489

    Article  CAS  PubMed  Google Scholar 

  40. Vanoye CG, Lossin C, Rhodes TH, George AL Jr (2006) Single-channel properties of human NaV1.1 and mechanism of channel dysfunction in SCN1A-associated epilepsy. J Gen Physiol 127:1–14

    Article  CAS  PubMed  Google Scholar 

  41. Watanabe E, Fujikawa A, Matsunaga H, Yasoshima Y, Sako N, Yamamoto T, Saegusa C, Noda M (2000) Nav2/NaG channel is involved in control of salt-intake behavior in the CNS. J Neurosci 20:7743–7751

    CAS  PubMed  Google Scholar 

  42. Waxman SG (2006) Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nat Rev Neurosci 7:932–941

    Article  CAS  PubMed  Google Scholar 

  43. Zhao J, Ziane R, Chatelier A, O'Leary ME, Chahine M (2007) Lidocaine promotes the trafficking and functional expression of Na(v)1.8 sodium channels in mammalian cells. J Neurophysiol 98:467–477

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Chahine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatelier, A., Zhao, J., Bois, P. et al. Biophysical characterisation of the persistent sodium current of the Nav1.6 neuronal sodium channel: a single-channel analysis. Pflugers Arch - Eur J Physiol 460, 77–86 (2010). https://doi.org/10.1007/s00424-010-0801-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0801-9

Keywords

Navigation