Skip to main content
Log in

PKC epsilon facilitates recovery of exocytosis after an exhausting stimulation

  • Signaling and Cell Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

It has been well documented that protein kinase Cs (PKCs) play multifaceted roles in regulating exocytosis of neurotransmitters and hormones. But the isoform-specific PKC effects are still poorly elucidated mainly because of the large variety of PKC isoforms and the dubious specificity of the commonly used pharmacological agents. In the present study, based on overexpression of wild-type or dominant negative PKCε, we demonstrate in neuroendocrine PC12 cells that PKCε, but not PKCα, facilitates recovery of exocytosis after an exhausting stimulation. Specifically, PKCε mediates fast recovery of the extent of exocytosis in a phosphatidylinositol biphosphate-dependent manner, likely through enhancing the rate of vesicle delivery and reorganization of cortical actin network. In addition, PKCε promotes fast recovery of vesicle release kinetics that is slowed after a strong stimulation. These experimental results may suggest a PKC-dependent mechanism relevant to the short-term plasticity of exocytosis in both neurons and neuroendocrine cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akita Y (2008) Protein kinase C epsilon: multiple roles in the function of, and signaling mediated by, the cytoskeleton. FEBS J 275:3995–4004

    Article  PubMed  CAS  Google Scholar 

  2. Alessi DR (1997) The protein kinase C inhibitors Ro 318220 and GF 109203X are equally potent inhibitors of MAPKAP kinase-1 beta (Rsk-2) and p70 S6 kinase. FEBS Lett 402:121–123

    Article  PubMed  CAS  Google Scholar 

  3. Amatore C, Arbault S, Guille M, Lemaitre F (2008) Electrochemical monitoring of single cell secretion: vesicular exocytosis and oxidative stress. Chem Rev 108:2585–2621

    Article  PubMed  CAS  Google Scholar 

  4. Bai L, Zhu D, Zhou KM, Zhou W, Li DD, Wang Y, Zhang RY, Xu T (2006) Differential properties of GTP- and Ca2+-stimulated exocytosis from large dense core vesicles. Traffic 7:416–428

    Article  PubMed  CAS  Google Scholar 

  5. Barclay JW, Craig TJ, Fisher RJ, Ciufo LF, Evans GJO, Morgan A, Burgoyne RD (2003) Phosphorylation of Munc18 by protein kinase C regulates the kinetics of exocytosis. J Biol Chem 278:10538–10545

    Article  PubMed  CAS  Google Scholar 

  6. Berberian K, Torres AJ, Fang QH, Kisler K, Lindau M (2009) F-actin and myosin II accelerate catecholamine release from chromaffin granules. J Neurosci 29:863–870

    Article  PubMed  CAS  Google Scholar 

  7. Borst JGG, Sakmann B (1999) Depletion of calcium in the synaptic cleft of a calyx-type synapse in the rat brainstem. J Physiol Lond 521:123–133

    Article  PubMed  CAS  Google Scholar 

  8. Brager DH, Cai X, Thompson SM (2003) Activity-dependent activation of presynaptic protein kinase C mediates post-tetanic potentiation. Nat Neurosci 6:551–552

    Article  PubMed  CAS  Google Scholar 

  9. Burgos M, Calvo S, Molina F, Vaquero CF, Samarel A, Llopis J, Tranque P (2007) PKC epsilon induces astrocyte stellation by modulating multiple cytoskeletal proteins and interacting with Rho A signalling pathways: implications for neuroinflammation. Eur J Neurosci 25:1069–1078

    Article  PubMed  Google Scholar 

  10. Burgoyne RD, Morgan A (2003) Secretory granule exocytosis. Physiol Rev 83:581–632

    PubMed  CAS  Google Scholar 

  11. Burrone J, Lagnado L (2000) Synaptic depression and the kinetics of exocytosis in retinal bipolar cells. J Neurosci 20:568–578

    PubMed  CAS  Google Scholar 

  12. Chen P, Gillis KD (2000) The noise of membrane capacitance measurements in the whole-cell recording configuration. Biophys J 79:2162–2170

    Article  PubMed  CAS  Google Scholar 

  13. Chen P, Hwang TC, Gillis KD (2001) The relationship between cAMP, Ca2+, and transport of CFTR to the plasma membrane. J Gen Physiol 118:135–144

    Article  PubMed  CAS  Google Scholar 

  14. Cousin MA, Robinson PJ (2000) Two mechanisms of synaptic vesicle recycling in rat brain nerve terminals. J Neurochem 75:1645–1653

    Article  PubMed  CAS  Google Scholar 

  15. Doerner D, Alger BE (1992) Evidence for hippocampal calcium-channel regulation by PKC based on comparison of diacylglycerols and phorbol esters. Brain Res 597:30–40

    Article  PubMed  CAS  Google Scholar 

  16. Eitzen G (2003) Actin remodeling to facilitate membrane fusion. Biochim Biophys Acta Mol Cell Res 1641:175–181

    Article  CAS  Google Scholar 

  17. Evanko D (2005) Primer: spying on exocytosis with amperometry. Nat Methods 2:650–650

    Article  PubMed  CAS  Google Scholar 

  18. Forsythe ID, Tsujimoto T, Barnes-Davies M, Cuttle MF, Takahashi T (1998) Inactivation of presynaptic calcium current contributes to synaptic depression at a fast central synapse. Neuron 20:797–807

    Article  PubMed  CAS  Google Scholar 

  19. Fujita Y, Sasaki T, Fukui K, Kotani H, Kimura T, Hata Y, Sudhof TC, Scheller RH, Takai Y (1996) Phosphorylation of Munc-18/n-Sec1/rbSec1 by protein kinase C—its implication in regulating the interaction of Munc-18/n-Sec1/rbSec1 with syntaxin. J Biol Chem 271:7265–7268

    Article  PubMed  CAS  Google Scholar 

  20. Haberman Y, Ziv I, Gorzalczany Y, Fukuda M, Sagl-Eisenberg R (2005) Classical protein kinase C(s) regulates targeting of synaptotagmin IX to the endocytic recycling compartment. J Cell Sci 118:1641–1649

    Article  PubMed  CAS  Google Scholar 

  21. Hay JC, Fisette PL, Jenkins GH, Fukami K, Takenawa T, Anderson RA, Martin TFJ (1995) ATP-dependent inositide phosphorylation required for Ca2+-activated secretion. Nature 374:173–177

    Article  PubMed  CAS  Google Scholar 

  22. Hilfiker S, Pieribone VA, Nordstedt C, Greengard P, Czernik AJ (1999) Regulation of synaptotagmin I phosphorylation by multiple protein kinases. J Neurochem 73:921–932

    Article  PubMed  CAS  Google Scholar 

  23. Hu KL, Mochly-Rosen D, Boutjdir M (2000) Evidence for functional role of epsilon PKC isozyme in the regulation of cardiac Ca2+ channels. Am J Physiol Heart Circ Physiol 279:H2658–H2664

    PubMed  CAS  Google Scholar 

  24. Huang L, Cheng HC, Isom R, Chen CS, Levine RA, Pauli BU (2008) Protein kinase C-epsilon mediates polymeric fibronectin assembly on the surface of blood-borne rat breast cancer cells to promote pulmonary metastasis. J Biol Chem 283:7616–7627

    Article  PubMed  CAS  Google Scholar 

  25. James DJ, Khodthong C, Kowalchyk JA, Martin TFJ (2008) Phosphatidylinositol 4, 5-bisphosphate regulates SNARE-dependent membrane fusion. J Cell Biol 182:355–366

    Article  PubMed  CAS  Google Scholar 

  26. Marin-Vicente C, Nicolas FE, Gomez-Fernandez JC, Corbalan-Garcia S (2008) The Ptdins(4, 5)P-2 ligand itself influences the localization of PKC alpha in the plasma membrane of intact living cells. J Mol Biol 377:1038–1052

    Article  PubMed  CAS  Google Scholar 

  27. McMahon T, Andersen R, Metten P, Crabbe JC, Messing RO (2000) Protein kinase C epsilon mediates up-regulation of N-type calcium channels by ethanol. Mol Pharmacol 57:53–58

    PubMed  CAS  Google Scholar 

  28. Mendez CF, Leibiger IB, Leibiger B, Hoy M, Gromada J, Berggren PO, Bertorello AM (2003) Rapid association of protein kinase C-epsilon with insulin granules is essential for insulin exocytosis. J Biol Chem 278:44753–44757

    Article  PubMed  CAS  Google Scholar 

  29. Morgan A, Burgoyne RD, Barclay JW, Craig TJ, Prescott GR, Ciufo LF, Evans GJO, Graham ME (2005) Regulation of exocytosis by protein kinase C. Biochem Soc Trans 33:1341–1344

    Article  PubMed  CAS  Google Scholar 

  30. Moser T, Beutner D (2000) Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. Proc Natl Acad Sci U S A 97:883–888

    Article  PubMed  CAS  Google Scholar 

  31. Mosharov EV, Sulzer D (2005) Analysis of exocytotic events recorded by amperometry. Nat Methods 2:651–658

    Article  PubMed  CAS  Google Scholar 

  32. Nagy G, Matti U, Nehring RB, Binz T, Rettig J, Neher E, Sorensen JB (2002) Protein kinase C-dependent phosphorylation of synaptosome-associated protein of 25 kDa at Ser(187) potentiates vesicle recruitment. J Neurosci 22:9278–9286

    PubMed  CAS  Google Scholar 

  33. Neely MD, Gesemann M (1994) Disruption of microfilaments in growth cones following depolarization and calcium influx. J Neurosci 14:7511–7520

    PubMed  CAS  Google Scholar 

  34. Nili U, De Wit H, Gulyas-Kovacs A, Toonen RF, Sorensen JB, Verhage M, Ashery U (2006) Munc18-1 phosphorylation by protein kinase C potentiates vesicle pool replenishment in bovine chromaffin cells. Neuroscience 143:487–500

    Article  PubMed  CAS  Google Scholar 

  35. Park YS, Hur EM, Choi BH, Kwak E, Jun DJ, Park SJ, Kim KT (2006) Involvement of protein kinase C-epsilon in activity-dependent potentiation of large dense-core vesicle exocytosis in chromaffin cells. J Neurosci 26:8999–9005

    Article  PubMed  CAS  Google Scholar 

  36. Rhee JS, Betz A, Pyott S, Reim K, Varoqueaux F, Augustin I, Hesse D, Sudhof TC, Takahashi M, Rosenmund C, Brose N (2002) Beta phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell 108:121–133

    Article  PubMed  CAS  Google Scholar 

  37. Rose SD, Lejen T, Zhang L, Trifaro JM (2001) Chromaffin cell F-actin disassembly and potentiation of catecholamine release in response to protein kinase C activation by phorbol esters is mediated through myristoylated alanine-rich C kinase substrate phosphorylation. J Biol Chem 276:36757–36763

    Article  PubMed  CAS  Google Scholar 

  38. Saitoh N, Hori T, Takahashi T (2001) Activation of the epsilon isoform of protein kinase C in the mammalian nerve terminal. Proc Natl Acad Sci U S A 98:14017–14021

    Article  PubMed  CAS  Google Scholar 

  39. Sheetz MP, Sable JE, Dobereiner HG (2006) Continuous membrane–cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. Annu Rev Biophys Biomol Struct 35:417–434

    Article  PubMed  CAS  Google Scholar 

  40. Shimazaki Y, Nishiki T, Omori A, Sekiguchi M, Kamata Y, Kozaki S, Takahashi M (1996) Phosphorylation of 25-kDa synaptosome-associated protein—possible involvement in protein kinase C-mediated regulation of neurotransmitter release. J Biol Chem 271:14548–14553

    Article  PubMed  CAS  Google Scholar 

  41. Shirai Y, Murakami T, Kuramasu M, Iijima L, Saito N (2007) A novel PIP2 binding of epsilon PKC and its contribution to the neurite induction ability. J Neurochem 102:1635–1644

    Article  PubMed  CAS  Google Scholar 

  42. Sollner TH (2003) Regulated exocytosis and SNARE function (Review). Mol Membr Biol 20:209–220

    Article  PubMed  CAS  Google Scholar 

  43. Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    Article  PubMed  CAS  Google Scholar 

  44. Thore S, Dyachok O, Tengholm A (2004) Oscillations of phospholipase C activity triggered by depolarization and Ca2+ influx in insulin-secreting cells. J Biol Chem 279:19396–19400

    Article  PubMed  CAS  Google Scholar 

  45. Tischler AS, Perlman RL, Morse GM, Sheard BE (1983) Glucocorticoids increase catecholamine synthesis and storage in PC12 pheochromocytoma cell-cultures. J Neurochem 40:364–370

    Article  PubMed  CAS  Google Scholar 

  46. Trifaro JM, Lejen T, Rose SD, Pene TD, Barkar ND, Seward EP (2002) Pathways that control cortical F-actin dynamics during secretion. Neurochem Res 27:1371–1385

    Article  PubMed  CAS  Google Scholar 

  47. Vitale ML, Delcastillo AR, Tchakarov L, Trifaro JM (1991) Cortical filamentous actin disassembly and Scinderin redistribution during chromaffin cell stimulation precede exocytosis, a phenomenon not exhibited by Gelsolin. J Cell Biol 113:1057–1067

    Article  PubMed  CAS  Google Scholar 

  48. Wang CT, Bai JH, Chang PY, Chapman ER, Jackson MB (2006) Synaptotagmin-Ca2+ triggers two sequential steps in regulated exocytosis in rat PC12 cells: fusion pore opening and fusion pore dilation. J Physiol Lond 570:295–307

    PubMed  CAS  Google Scholar 

  49. Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772

    Article  PubMed  CAS  Google Scholar 

  50. Westerink RHS, Ewing AG (2008) The PC12 cell as model for neurosecretion. Acta Physiol 192:273–285

    Article  CAS  Google Scholar 

  51. Wooten MW, Seibenhener ML, Soh Y, Ewald SJ, White KR, Lloyd ED, Olivier A, Parker PJ (1992) Characterization and differential expression of protein-kinase-C isoforms in PC12 cells—differentiation parallels an increase in PKC Beta (II). FEBS Lett 298:74–78

    Article  PubMed  CAS  Google Scholar 

  52. Xue RH, Zhao YY, Chen P (2009) Involvement of PKC alpha in PMA-induced facilitation of exocytosis and vesicle fusion in PC12 cells. Biochem Biophys Res Commun 380:371–376

    Article  PubMed  CAS  Google Scholar 

  53. Yang Y, Udayasankar S, Dunning J, Chen P, Gillis KD (2002) A highly Ca2+-sensitive pool of vesicles is regulated by protein kinase C in adrenal chromaffin cells. Proc Natl Acad Sci U S A 99:17060–17065

    Article  PubMed  CAS  Google Scholar 

  54. Zhang EM, Xue RH, Soo J, Chen P (2008) Effects of phorbol ester on vesicle dynamics as revealed by total internal reflection fluorescence microscopy. Pfluegers Arch Eur J Physiol 457:211–222

    Article  CAS  Google Scholar 

  55. Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by an AcRF tier 2 grant (T206B3220) from the Ministry of Education (Singapore).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, R., Zhao, Y., Su, L. et al. PKC epsilon facilitates recovery of exocytosis after an exhausting stimulation. Pflugers Arch - Eur J Physiol 458, 1137–1149 (2009). https://doi.org/10.1007/s00424-009-0697-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-009-0697-4

Keywords

Navigation