Skip to main content
Log in

Differential contribution of cardiac sarcomeric proteins in the myofibrillar force response to stretch

  • Cardiovascular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The present study examined the contribution of myofilament contractile proteins to regional function in guinea pig myocardium. We investigated the effect of stretch on myofilament contractile proteins, Ca2+ sensitivity, and cross-bridge cycling kinetics (K tr) of force in single skinned cardiomyocytes isolated from the sub-endocardial (ENDO) or sub-epicardial (EPI) layer. As observed in other species, ENDO cells were stiffer, and Ca2+ sensitivity of force at long sarcomere length was higher compared with EPI cells. Maximal K tr was unchanged by stretch, but was higher in EPI cells possibly due to a higher α-MHC content. Submaximal Ca2+-activated K tr increased only in ENDO cells with stretch. Stretch of skinned ENDO muscle strips induced increased phosphorylation in both myosin-binding protein C and myosin light chain 2. We concluded that transmural MHC isoform expression and differential regulatory protein phosphorylation by stretch contributes to regional differences in stretch modulation of activation in guinea pig left ventricle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allen DG, Kentish JC (1988) Calcium concentration in the myoplasm of skinned ferret ventricular muscle following changes in muscle length. J Physiol 407:489–503

    PubMed  CAS  Google Scholar 

  2. Balnave CD, Allen DG (1996) The effect of muscle length on intracellular calcium and force in single fibres from mouse skeletal muscle. J Physiol 492:705–713

    PubMed  CAS  Google Scholar 

  3. Borbely A, van der Velden J, Papp Z, Bronzwaer JG, Edes I, Stienen GJ, Paulus WJ (2005) Cardiomyocyte stiffness in diastolic heart failure. Circulation 111:774–781

    Article  PubMed  Google Scholar 

  4. Brenner B, Eisenberg E (1986) Rate of force generation in muscle: correlation with actomyosin ATPase activity in solution. Proc Natl Acad Sci USA 83:3542–3546

    Article  PubMed  CAS  Google Scholar 

  5. Bugaisky LB, Anderson PG, Hall RS, Bishop SP (1990) Differences in myosin isoform expression in the subepicardial and subendocardial myocardium during cardiac hypertrophy in the rat. Circ Res 66:1127–1132

    PubMed  CAS  Google Scholar 

  6. Cazorla O, Freiburg A, Helmes M, Centner T, Mcnabb M, Wu Y, Trombitas K, Labeit S, Granzier H (2000) Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ Res 86:59–67

    PubMed  CAS  Google Scholar 

  7. Cazorla O, Le Guennec JY, White E (2000) Length–tension relationships of sub-epicardial and sub-endocardial single ventricular myocytes from rat and ferret hearts. J Mol Cell Cardiol 32:735–744

    Article  PubMed  CAS  Google Scholar 

  8. Cazorla O, Pascarel C, Garnier D, Le Guennec JY (1997) Resting tension participates in the modulation of active tension in isolated guinea pig ventricular myocytes. J Mol Cell Cardiol 29:1629–1637

    Article  PubMed  CAS  Google Scholar 

  9. Cazorla O, Szilagyi S, Le Guennec JY, Vassort G, Lacampagne A (2005) Transmural stretch-dependent regulation of contractile properties in rat heart and its alteration after myocardial infarction. Faseb J 19:88–90

    PubMed  CAS  Google Scholar 

  10. Cazorla O, Szilagyi S, Vignier N, Salazar G, Kramer E, Vassort G, Carrier L, Lacampagne A (2006) Length and protein kinase A modulations of myocytes in cardiac myosin binding protein C-deficient mice. Cardiovasc Res 69:370–380

    Article  PubMed  CAS  Google Scholar 

  11. Cazorla O, Vassort G, Garnier D, Le Guennec JY (1999) Length modulation of active force in rat cardiac myocytes: is titin the sensor. J Mol Cell Cardiol 31:1215–1227

    Article  PubMed  CAS  Google Scholar 

  12. Cazorla O, Wu Y, Irving TC, Granzier H (2001) Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes. Circ Res 88:1028–1035

    Article  PubMed  CAS  Google Scholar 

  13. Chan JY, Takeda M, Briggs LE, Graham ML, Lu JT, Horikoshi N, Weinberg EO, Aoki H, Sato N, Chien KR, Kasahara H (2008) Identification of cardiac-specific myosin light chain kinase. Circ Res 102:571–580

    Article  PubMed  CAS  Google Scholar 

  14. Clement O, Puceat M, Walsh MP, Vassort G (1992) Protein kinase C enhances myosin light-chain kinase effects on force development and ATPase activity in rat single skinned cardiac cells. Biochem J 285:311–317

    PubMed  CAS  Google Scholar 

  15. Davis JS, Hassanzadeh S, Winitsky S, Lin H, Satorius C, Vemuri R, Aletras AH, Wen H, Epstein ND (2001) The overall pattern of cardiac contraction depends on a spatial gradient of myosin regulatory light chain phosphorylation. Cell 107:631–641

    Article  PubMed  CAS  Google Scholar 

  16. Eisenberg BR, Edwards JA, Zak R (1985) Transmural distribution of isomyosin in rabbit ventricle during maturation examined by immunofluorescence and staining for calcium-activated adenosine triphosphatase. Circ Res 56:548–555

    PubMed  CAS  Google Scholar 

  17. Farman GP, Walker JS, de Tombe PP, Irving TC (2006) Impact of osmotic compression on sarcomere structure and myofilament calcium sensitivity of isolated rat myocardium. Am J Physiol Heart Circ Physiol 291:H1847–1855

    Article  PubMed  CAS  Google Scholar 

  18. Fukuda N, Sasaki D, Ishiwata S, Kurihara S (2001) Length dependence of tension generation in rat skinned cardiac muscle: role of titin in the Frank–Starling mechanism of the heart. Circulation 104:1639–1645

    Article  PubMed  CAS  Google Scholar 

  19. Fukuda N, Wu Y, Farman G, Irving TC, Granzier H (2003) Titin isoform variance and length dependence of activation in skinned bovine cardiac muscle. J Physiol (Lond) 553:147–154

    Article  CAS  Google Scholar 

  20. Granzier HL, Irving TC (1995) Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J 68:1027–1044

    Article  PubMed  CAS  Google Scholar 

  21. Granzier HL, Labeit S (2004) The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ Res 94:284–295

    Article  PubMed  CAS  Google Scholar 

  22. Grimm M, Mahnecke N, Soja F, El-Armouche A, Haas P, Treede H, Reichenspurner H, Eschenhagen T (2006) The MLCK-mediated alpha1-adrenergic inotropic effect in atrial myocardium is negatively modulated by PKCepsilon signaling. Br J Pharmacol 148:991–1000

    Article  PubMed  CAS  Google Scholar 

  23. Harris SP, Rostkova E, Gautel M, Moss RL (2004) Binding of myosin binding protein-C to myosin subfragment S2 affects contractility independent of a tether mechanism. Circ Res 95:930–936

    Article  PubMed  CAS  Google Scholar 

  24. Herring BP, England PJ (1986) The turnover of phosphate bound to myosin light chain-2 in perfused rat heart. Biochem J 240:205–214

    PubMed  CAS  Google Scholar 

  25. Hibberd MG, Jewell BR (1982) Calcium-and length-dependent force production in rat ventricular muscle. J Physiol 329:527–540

    PubMed  CAS  Google Scholar 

  26. High CW, Stull JT (1980) Phosphorylation of myosin in perfused rabbit and rat hearts. Am J Physiol 239:H756–H764

    PubMed  CAS  Google Scholar 

  27. Hofmann PA, Fuchs F (1987) Effect of length and cross-bridge attachment on Ca2+ binding to cardiac troponin C. Am J Physiol 253:C90–C96

    PubMed  CAS  Google Scholar 

  28. Hofmann PA, Hartzell HC, Moss RL (1991) Alterations in CA2+ sensitive tension due to partial extraction of c-protein from rat skinned cardiac myocytes and rabbit skeletal muscle fibers. J Gen Physiol 97:1141–1163

    Article  PubMed  CAS  Google Scholar 

  29. Kentish JC, Mccloskey DT, Layland J, Palmer S, Leiden JM, Martin AF, Solaro RJ (2001) Phosphorylation of troponin I by protein kinase A accelerates relaxation and crossbridge cycle kinetics in mouse ventricular muscle. Circ Res 88:1059–1065

    Article  PubMed  CAS  Google Scholar 

  30. Kobayashi T, Solaro RJ (2005) Calcium, thin filaments, and the integrative biology of cardiac contractility. Annu Rev Physiol 67:39–67

    Article  PubMed  CAS  Google Scholar 

  31. Konhilas JP, Irving TC, de Tombe PP (2002) Myofilament calcium sensitivity in skinned rat cardiac trabeculae: role of interfilament spacing. Circ Res 90:59–65

    Article  PubMed  CAS  Google Scholar 

  32. Konhilas JP, Irving TC, Wolska BM, Jweied EE, Martin AF, Solaro RJ, Tombe PPD (2003) Troponin I in the murine myocardium: influence on length-dependent activation and interfilament spacing. J Physiol (Lond) 547:951–961

    Article  CAS  Google Scholar 

  33. Korte FS, McDonald KS (2007) Sarcomere length dependence of rat skinned cardiac myocyte mechanical properties: dependence on myosin heavy chain. J Physiol 581:725–739

    Article  PubMed  CAS  Google Scholar 

  34. Kruger M, Kohl T, Linke WA (2006) Developmental changes in passive stiffness and myofilament Ca2+ sensitivity due to titin and troponin-I isoform switching are not critically triggered by birth. Am J Physiol Heart Circ Physiol 291:H496–H506

    Article  PubMed  CAS  Google Scholar 

  35. Morano I (1999) Tuning the human heart molecular motors by myosin light chains. J Mol Med 77:544–555

    Article  PubMed  CAS  Google Scholar 

  36. Moss RL, Fitzsimons DP (2002) Frank-starling relationship: long on importance, short on mechanism. Circ Res 90:11–13

    Article  PubMed  CAS  Google Scholar 

  37. Neagoe C, Opitz CA, Makarenko I, Linke WA (2003) Gigantic variety: expression patterns of titin isoforms in striated muscles and consequences for myofibrillar passive stiffness. J Muscle Res Cell Motil 24:175–189

    Article  PubMed  CAS  Google Scholar 

  38. Olsson MC, Patel JR, Fitzsimons DP, Walker JW, Moss RL (2004) Basal myosin light chain phosphorylation is a determinant of Ca2+ sensitivity of force and activation dependence of the kinetics of myocardial force development. Am J Physiol Heart Circ Physiol 287:H2712–2718

    Article  PubMed  CAS  Google Scholar 

  39. Pearson JT, Shirai M, Tsuchimochi H, Schwenke DO, Ishida T, Kangawa K, Suga H, Yagi N (2007) Effects of sustained length-dependent activation on in situ cross-bridge dynamics in rat hearts. Biophys J 24:4319–4329

    Article  CAS  Google Scholar 

  40. Pi Y, Zhang D, Kemnitz KR, Wang H, Walker JW (2003) Protein kinase C and A sites on troponin I regulate myofilament CA2+ sensitivity and ATPase activity in the mouse myocardium. J Physiol 552:845–857

    Article  PubMed  CAS  Google Scholar 

  41. Pohlmann L, Kroger I, Vignier N, Schlossarek S, Kramer E, Coirault C, Sultan KR, El-Armouche A, Winegrad S, Eschenhagen T, Carrier L (2007) Cardiac myosin-binding protein C is required for complete relaxation in intact myocytes. Circ Res 101:928–938

    Article  PubMed  CAS  Google Scholar 

  42. Pyle WG, Solaro RJ (2004) At the crossroads of myocardial signaling: the role of Z-discs in intracellular signaling and cardiac function. Circ Res 94:296–305

    Article  PubMed  CAS  Google Scholar 

  43. Rundell VLM, Manaves V, Martin AF, de tombe PP (2005) Impact of {beta}-myosin heavy chain isoform expression on cross-bridge cycling kinetics. Am J Physiol Heart Circ Physiol 288:H896–H903

    Article  PubMed  CAS  Google Scholar 

  44. Stelzer JE, Fitzsimons DP, Moss RL (2006) Ablation of myosin-binding protein-C accelerates force development in mouse myocardium. Biophys J 90:4119–4127

    Article  PubMed  CAS  Google Scholar 

  45. Stelzer JE, Moss RL (2006) Contributions of stretch activation to length-dependent contraction in murine myocardium. J Gen Physiol 128:461–471

    Article  PubMed  CAS  Google Scholar 

  46. Stelzer JE, Patel JR, Walker JW, Moss RL (2007) Differential roles of cardiac myosin-binding protein C and cardiac troponin I in the myofibrillar force responses to protein kinase A phosphorylation. Circ Res 101:503–511

    Article  PubMed  CAS  Google Scholar 

  47. Van der Velden J, Papp Z, Boontje NM, Zaremba R, de jong JW, Janssen PML, Hasenfuss G, Stienen GJM (2003) The effect of myosin light chain 2 dephosphorylation on Ca2+-sensitivity of force is enhanced in failing human hearts. Cardiovasc Res 57:505–514

    Article  PubMed  Google Scholar 

  48. Vannier C, Chevassus H, Vassort G (1996) Ca-dependence of isometric force kinetics in single skinned ventricular cardiomyocytes from rats. Cardiovasc Res 32:580–586

    PubMed  CAS  Google Scholar 

  49. Winegrad S (1999) Cardiac myosin binding protein C. Circ Res 84:1117–1126

    PubMed  CAS  Google Scholar 

  50. Witt CC, Gerull B, Davies MJ, Centner T, Linke WA, Thierfelder L (2000) Hypercontractile properties of cardiac muscle fibers in a knock-in mouse model of cardiac myosin-binding protein-C. J Biol Chem 84:10

    Google Scholar 

Download references

Acknowledgements

This work was supported by the “Association Française contre les Myopathies”, and “Région Languedoc-Roussillon”. OC is an established investigator of CNRS. PPT was supported by INSERM and NIH grants HL-62426; HL-75494; HL-77195. Thanks are due to Guillermo Salazar for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Cazorla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ait mou, Y., le Guennec, JY., Mosca, E. et al. Differential contribution of cardiac sarcomeric proteins in the myofibrillar force response to stretch. Pflugers Arch - Eur J Physiol 457, 25–36 (2008). https://doi.org/10.1007/s00424-008-0501-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0501-x

Keywords

Navigation