Skip to main content
Log in

Impact of mechanical stress on ion transport in native lung epithelium (Xenopus laevis): short-term activation of Na+, Cl and K+ channels

  • Ion Channels
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Epithelia, in general, and the lung epithelium, in particular, are exposed to mechanical forces, but little is known about their impact on pulmonary ion transport. In our present study, we employed transepithelial ion transport measurements on Xenopus lung preparations using custom-built Ussing chambers. Tissues were exposed to mechanical stress by increasing the water column (5 cm) at one side of the tissues. Apical exposure to hydrostatic pressure significantly decreased the short circuit current (I SC: 24 ± 1%, n = 152), slightly decreased the transepithelial resistance (R T: 7 ± 2%, n = 152), but increased the apical membrane capacitance (C M: 16 ± 6%, n = 9). The pressure-induced effect was sensitive to Na+ (amiloride), Cl (DIDS, NFA, NPPB) and K+ channel blockers (Ba2+, glibenclamide). Further on, it was accompanied by increased extracellular ATP levels. The results show that mechanical stress leads to an activation of Na+, Cl, and K+ conductances in a native pulmonary epithelium resulting in a net decrease of ion absorption. This could be of considerable interest, since an altered ion transport may contribute to pathophysiological conditions, e.g., the formation of pulmonary edema during artificial ventilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Althaus M, Bogdan R, Clauss WG, Fronius M (2007) Mechano-sensitivity of epithelial sodium channels (ENaCs): laminar shear stress increases ion channel open probability. FASEB J 10:2389–2399

    Article  CAS  Google Scholar 

  2. Investigators ARDSN (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  3. Barakat AI, Leaver EV, Pappone PA, Davies PF (1999) A flow-activated chloride-selective membrane current in vascular endothelial cells. Circ Res 85:820–828

    PubMed  CAS  Google Scholar 

  4. Cavanaugh KJJ, Oswari J, Margulies SS (2001) Role of stretch on tight junction structure in alveolar epithelial cells. Am J Respir Cell Mol Biol 25:584–591

    PubMed  CAS  Google Scholar 

  5. Chatterjee S, Levitan I, Wei Z, Fisher AB (2006) KATP channels are an important component of the shear-sensing mechanism in the pulmonary microvasculature. Microcirculation 13:633–644

    Article  PubMed  CAS  Google Scholar 

  6. Cressman VL, Lazarowski E, Homolya L, Boucher RC, Koller BH, Grubb BR (1999) Effect of loss of P2Y(2) receptor gene expression on nucleotide regulation of murine epithelial Cl(-) transport. J Biol Chem 274:26461–26468

    Article  PubMed  CAS  Google Scholar 

  7. Davis KA, Cowley EA (2006) Two-pore-domain potassium channels support anion secretion from human airway Calu-3 epithelial cells. Pflugers Arch 451:631–641

    Article  PubMed  CAS  Google Scholar 

  8. Dawson DC, Richards NW (1990) Basolateral K conductance: role in regulation of NaCl absorption and secretion. Am J Physiol 259:C181–95

    PubMed  CAS  Google Scholar 

  9. Derdak S (2003) High-frequency oscillatory ventilation for acute respiratory distress syndrome in adult patients. Crit Care Med 31:S317–23

    Article  PubMed  Google Scholar 

  10. Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323

    PubMed  CAS  Google Scholar 

  11. Edwards YS (2001) Stretch stimulation: its effects on alveolar type II cell function in the lung. Comp Biochem Physiol A Mol Integr Physiol 129:245–260

    Article  PubMed  CAS  Google Scholar 

  12. Ferguson DR, Kennedy I, Burton TJ (1997) ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes—a possible sensory mechanism? J Physiol 505:503–511

    Article  PubMed  CAS  Google Scholar 

  13. Fischer H, Clauss W (1990) Regulation of Na+ channels in frog lung epithelium: a target tissue for aldosterone action. Pflugers Arch 416:62–67

    Article  PubMed  CAS  Google Scholar 

  14. Fischer H, Van Driessche W, Clauss W (1989) Evidence for apical sodium channels in frog lung epithelial cells. Am J Physiol 256:C764–71

    PubMed  CAS  Google Scholar 

  15. Fitz JG (2007) Regulation of cellular ATP release. Trans Am Clin Climatol Assoc 118:199–208

    PubMed  Google Scholar 

  16. Frank JA, Matthay MA (2003) Science review: mechanisms of ventilator-induced injury. Crit Care 7:233–241

    Article  PubMed  Google Scholar 

  17. Fronius M, Berk A, Clauss W, Schnizler M (2004) Ion transport across Xenopus alveolar epithelium is regulated by extracellular ATP, UTP and adenosine. Respir Physiol Neurobiol 139:133–144

    Article  PubMed  CAS  Google Scholar 

  18. Fronius M, Clauss W, Schnizler M (2003) Stimulation of transepithelial Na(+) current by extracellular Gd(3+) in Xenopus laevis alveolar epithelium. J Membr Biol 195:43–51

    Article  PubMed  CAS  Google Scholar 

  19. Gao L, Yankaskas JR, Fuller CM, Sorscher EJ, Matalon S, Forman HJ, Venglarik CJ (2001) Chlorzoxazone or 1-EBIO increases Na(+) absorption across cystic fibrosis airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 281:L1123–L1129

    PubMed  CAS  Google Scholar 

  20. Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740

    PubMed  CAS  Google Scholar 

  21. Han B, Lodyga M, Liu M (2005) Ventilator-induced lung injury: role of protein-protein interaction in mechanosensation. Proc Am Thorac Soc 2:181–187

    Article  PubMed  CAS  Google Scholar 

  22. Homolya L, Steinberg TH, Boucher RC (2000) Cell to cell communication in response to mechanical stress via bilateral release of ATP and UTP in polarized epithelia. J Cell Biol 150:1349–1360

    Article  PubMed  CAS  Google Scholar 

  23. Illek B, Fischer H, Clauss W (1990) Aldosterone regulation of basolateral potassium channels in alveolar epithelium. Am J Physiol 259:L230–L237

    PubMed  CAS  Google Scholar 

  24. Inglis SK, Brown SG, Constable MJ, McTavish N, Olver RE, Wilson SM (2007) A Ba2+-resistant, acid-sensitive K+ conductance in Na+-absorbing H441 human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 292:L1304–L1312

    Article  PubMed  CAS  Google Scholar 

  25. Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82:503–568

    PubMed  CAS  Google Scholar 

  26. Kim KJ (1990) Active Na+ transport across Xenopus lung alveolar epithelium. Respir Physiol 81:29–39

    Article  PubMed  CAS  Google Scholar 

  27. Kitterman JA (1996) The effects of mechanical forces on fetal lung growth. Clin Perinatol 23:727–740

    PubMed  CAS  Google Scholar 

  28. Krattenmacher R, Clauss W (1988) Electrophysiological analysis of sodium-transport in the colon of the frog (Rana esculenta). Modulation of apical membrane properties by antidiuretic hormone. Pflugers Arch 411:606–612

    Article  PubMed  CAS  Google Scholar 

  29. Leipziger J (2003) Control of epithelial transport via luminal P2 receptors. Am J Physiol Renal Physiol 284:F419–F432

    PubMed  CAS  Google Scholar 

  30. Leroy C, Dagenais A, Berthiaume Y, Brochiero E (2004) Molecular identity and function in transepithelial transport of K(ATP) channels in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 286:L1027–L1037

    Article  PubMed  CAS  Google Scholar 

  31. Leroy C, Prive A, Bourret JC, Berthiaume Y, Ferraro P, Brochiero E (2006) Regulation of ENaC and CFTR expression with K+ channel modulators and effect on fluid absorption across alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 291:L1207–L1219

    Article  PubMed  CAS  Google Scholar 

  32. Lewis SA, de Moura JL (1982) Incorporation of cytoplasmic vesicles into apical membrane of mammalian urinary bladder epithelium. Nature 297:685–688

    Article  PubMed  CAS  Google Scholar 

  33. Lewis SA, de Moura JL (1984) Apical membrane area of rabbit urinary bladder increases by fusion of intracellular vesicles: an electrophysiological study. J Membr Biol 82:123–136

    Article  PubMed  CAS  Google Scholar 

  34. Ma HP, Li L, Zhou ZH, Eaton DC, Warnock DG (2002) ATP masks stretch activation of epithelial sodium channels in A6 distal nephron cells. Am J Physiol Renal Physiol 282:F501–F505

    PubMed  CAS  Google Scholar 

  35. Matthay MA (2002) Alveolar fluid clearance in patients with ARDS: does it make a difference? Chest 122:340S–343S

    Article  PubMed  Google Scholar 

  36. Meban C (1973) The pneumonocytes in the lung of Xenopus laevis. J Anat 114:235–244

    PubMed  CAS  Google Scholar 

  37. Mironov SL, Richter DW (2000) Intracellular signalling pathways modulate K(ATP) channels in inspiratory brainstem neurones and their hypoxic activation: involvement of metabotropic receptors, G-proteins and cytoskeleton. Brain Res 853:60–67

    Article  PubMed  CAS  Google Scholar 

  38. Nichols CG (2006) KATP channels as molecular sensors of cellular metabolism. Nature 440:470–476

    Article  PubMed  CAS  Google Scholar 

  39. Niemeyer MI, Cid LP, Barros LF, Sepulveda FV (2001) Modulation of the two-pore domain acid-sensitive K+ channel TASK-2 (KCNK5) by changes in cell volume. J Biol Chem 276:43166–43174

    Article  PubMed  CAS  Google Scholar 

  40. Nilius B, Droogmans G (2003) Amazing chloride channels: an overview. Acta Physiol Scand 177:119–147

    Article  PubMed  CAS  Google Scholar 

  41. O’Grady SM, Lee SY (2003) Chloride and potassium channel function in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 284:L689–L700

    PubMed  CAS  Google Scholar 

  42. Puoti A, May A, Canessa CM, Horisberger JD, Schild L, Rossier BC (1995) The highly selective low-conductance epithelial Na channel of Xenopus laevis A6 kidney cells. Am J Physiol 269:C188–C197

    PubMed  CAS  Google Scholar 

  43. Ricard JD (2004) Barotrauma during mechanical ventilation: why aren’t we seeing any more? Intensive Care Med 30:533–535

    Article  PubMed  Google Scholar 

  44. Rossier BC (1998) Mechanosensitivity of the epithelial sodium channel (ENaC): controversy or pseudocontroversy? J Gen Physiol 112:95–96

    Article  PubMed  CAS  Google Scholar 

  45. Sakuma T, Takahashi K, Ohya N, Nakada T, Matthay MA (1998) Effects of ATP-sensitive potassium channel opener on potassium transport and alveolar fluid clearance in the resected human lung. Pharmacol Toxicol 83:16–22

    Article  PubMed  CAS  Google Scholar 

  46. Saumon G, Basset G, Bouchonnet F, Crone C (1989) Cellular effects of beta-adrenergic and of cAMP stimulation on potassium transport in rat alveolar epithelium. Pflugers Arch 414:340–345

    Article  PubMed  CAS  Google Scholar 

  47. Sheppard DN, Robinson KA (1997) Mechanism of glibenclamide inhibition of cystic fibrosis transmembrane conductance regulator Cl channels expressed in a murine cell line. J Physiol 503:333–346

    Article  PubMed  CAS  Google Scholar 

  48. Singh AK, Devor DC, Gerlach AC, Gondor M, Pilewski JM, Bridges RJ (2000) Stimulation of Cl(−) secretion by chlorzoxazone. J Pharmacol Exp Ther 292:778–787

    PubMed  CAS  Google Scholar 

  49. Sommer D, Bogdan R, Berger J, Peters DM, Morty RE, Clauss WG, Fronius M (2007) CFTR-dependent Cl(−) secretion in Xenopus laevis lung epithelium. Respir Physiol Neurobiol 158:97–106

    Article  PubMed  CAS  Google Scholar 

  50. Tarran R, Button B, Picher M, Paradiso AM, Ribeiro CM, Lazarowski ER, Zhang L, Collins PL, Pickles RJ, Fredberg JJ, Boucher RC (2005) Normal and cystic fibrosis airway surface liquid homeostasis. The effects of phasic shear stress and viral infections. J Biol Chem 280:35751–35759

    Article  PubMed  CAS  Google Scholar 

  51. Tschumperlin DJ, Drazen JM (2006) Chronic effects of mechanical force on airways. Annu Rev Physiol 68:563–583

    Article  PubMed  CAS  Google Scholar 

  52. Urbach V, Van Kerkhove E, Maguire D, Harvey BJ (1996) Cross-talk between ATP-regulated K+ channels and Na+ transport via cellular metabolism in frog skin principal cells. J Physiol 491:99–109

    PubMed  CAS  Google Scholar 

  53. Van Wagoner DR (1993) Mechanosensitive gating of atrial ATP-sensitive potassium channels. Circ Res 72:973–983

    PubMed  Google Scholar 

  54. Wang J, Morishima S, Okada Y (2003) IK channels are involved in the regulatory volume decrease in human epithelial cells. Am J Physiol Cell Physiol 284:C77–C84

    PubMed  CAS  Google Scholar 

  55. Ware LB, Matthay MA (2001) Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med 163:1376–1383

    PubMed  CAS  Google Scholar 

  56. Welling PA (1995) Cross-talk and the role of KATP channels in the proximal tubule. Kidney Int 48:1017–1023

    Article  PubMed  CAS  Google Scholar 

  57. Wilson SM, Brown SG, McTavish N, McNeill RP, Husband EM, Inglis SK, Olver RE, Clunes MT (2006) Expression of intermediate-conductance, Ca2+-activated K+ channel (KCNN4) in H441 human distal airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 291:L957–L965

    Article  PubMed  CAS  Google Scholar 

  58. Wirtz HR, Dobbs LG (2000) The effects of mechanical forces on lung functions. Respir Physiol 119:1–17

    Article  PubMed  CAS  Google Scholar 

  59. Zunkler BJ, Lenzen S, Manner K, Panten U, Trube G (1988) Concentration-dependent effects of tolbutamide, meglitinide, glipizide, glibenclamide and diazoxide on ATP-regulated K+ currents in pancreatic B-cells. Naunyn Schmiedebergs Arch Pharmacol 337:225–230

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the experimental and technical assistance of M. Buss. Also, we would like to thank S. Kristek for his technical support and especially for providing the modified Ussing chambers and B. Kahnert for electrical support. All experiments were in agreement with the German law of animal care (permission provided by the regional board Giessen).

Grants

The present study was supported by the Deutsche Forschungsgemeinschaft grant # FR 2124/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Fronius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogdan, R., Veith, C., Clauss, W. et al. Impact of mechanical stress on ion transport in native lung epithelium (Xenopus laevis): short-term activation of Na+, Cl and K+ channels. Pflugers Arch - Eur J Physiol 456, 1109–1120 (2008). https://doi.org/10.1007/s00424-008-0486-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0486-5

Keywords

Navigation