Skip to main content
Log in

Adrenaline-induced hyperpolarization of mouse pancreatic islet cells is mediated by G protein-gated inwardly rectifying potassium (GIRK) channels

  • Ion Channels
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Insulin secretion inhibitors (ISI) such as adrenaline and somatostatin act on the pancreatic β-cell by a number of mechanisms, one of which is plasma membrane hyperpolarization. Despite the ample evidence for this effect, the principal underlying channels have not been identified thus far. The G protein-gated inwardly rectifying potassium (Kir3.x/GIRK) channels, which are responsible for hyperpolarization in other excitable tissues, are likely candidates. In this paper, we show that GIRK channels are expressed and functional in mouse pancreatic islet cells. Reverse transcription polymerase chain reaction analysis revealed all four GIRK gene products in islet tissue. Immunofluorescent labeling of pancreatic sections demonstrated exclusive islet localization of all GIRK subunits, in part within insulin-expressing cells. Using the whole-cell configuration of the patch clamp technique, we found that the application of tertiapin-Q, a selective inhibitor of the GIRK channels, abolishes adrenaline-mediated inward currents and strongly attenuates adrenaline-induced hyperpolarization in a reversible manner. These results imply that GIRK channels are responsible for a major part of the electrical response to adrenaline in islet cells and suggest a role for these channels in pancreatic physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abel KB, Lehr S, Ullrich S (1996) Adrenaline-, not somatostatin-induced hyperpolarization is accompanied by a sustained inhibition of insulin secretion in INS-1 cells. Activation of sulphonylurea K+ATP channels is not involved. Pflugers Arch 432:89–96

    Article  PubMed  CAS  Google Scholar 

  2. Ahren B, Berggren PO, Bokvist K, Rorsman P (1989) Does galanin inhibit insulin secretion by opening of the ATP-regulated K+ channel in the beta-cell? Peptides 10:453–457

    Article  PubMed  CAS  Google Scholar 

  3. Asfari M, Janjic D, Meda P, Li G, Halban PA, Wollheim CB (1992) Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology 130:167–178

    Article  PubMed  CAS  Google Scholar 

  4. Bond CT, Ammala C, Ashfield R, Blair TA, Gribble F, Khan RN, Lee K, Proks P, Rowe IC, Sakura H et al (1995) Cloning and functional expression of the cDNA encoding an inwardly-rectifying potassium channel expressed in pancreatic beta-cells and in the brain. FEBS Lett 367:61–66

    Article  PubMed  CAS  Google Scholar 

  5. Bunemann M, Bucheler MM, Philipp M, Lohse MJ, Hein L (2001) Activation and deactivation kinetics of alpha 2A- and alpha 2C-adrenergic receptor-activated G protein-activated inwardly rectifying K+ channel currents. J Biol Chem 276:47512–47517

    Article  PubMed  CAS  Google Scholar 

  6. Chen L, Yu YC, Zhao JW, Yang XL (2004) Inwardly rectifying potassium channels in rat retinal ganglion cells. Eur J Neurosci 20:956–964

    Article  PubMed  Google Scholar 

  7. Chung S, Soh H, Uhm D (1999) Beta-adrenergic modulation of maxi-K channels in vascular smooth muscle via Gi through a membrane-delimited pathway. Pflugers Arch 437:508–510

    Article  PubMed  CAS  Google Scholar 

  8. de Weille J, Schmid-Antomarchi H, Fosset M, Lazdunski M (1988) ATP-sensitive K+ channels that are blocked by hypoglycemia-inducing sulfonylureas in insulin-secreting cells are activated by galanin, a hyperglycemia-inducing hormone. Proc Natl Acad Sci U S A 85:1312–1316

    Article  PubMed  Google Scholar 

  9. de Weille JR, Schmid-Antomarchi H, Fosset M, Lazdunski M (1989) Regulation of ATP-sensitive K+ channels in insulinoma cells: activation by somatostatin and protein kinase C and the role of cAMP. Proc Natl Acad Sci U S A 86:2971–2975

    Article  PubMed  Google Scholar 

  10. Debuyser A, Drews G, Henquin JC (1991) Adrenaline inhibition of insulin release: role of the repolarization of the B cell membrane. Pflugers Arch 419:131–137

    Article  PubMed  CAS  Google Scholar 

  11. DePaoli AM, Bell GI, Stoffel M (1994) G protein-activated inwardly rectifying potassium channel (GIRK1/KGA) mRNA in adult rat heart and brain by in situ hybridization histochemistry. Mol Cell Neurosci 5:515–522

    Article  PubMed  CAS  Google Scholar 

  12. Derjean D, Bertrand S, Le Masson G, Landry M, Morisset V, Nagy F (2003) Dynamic balance of metabotropic inputs causes dorsal horn neurons to switch functional states. Nat Neurosci 6:274–281

    Article  PubMed  CAS  Google Scholar 

  13. Dixon AK, Gubitz AK, Ashford ML, Richardson PJ, Freeman TC (1995) Distribution of mRNA encoding the inwardly rectifying K+ channel, BIR1 in rat tissues. FEBS Lett 374:135–140

    Article  PubMed  CAS  Google Scholar 

  14. Dobrev D, Friedrich A, Voigt N, Jost N, Wettwer E, Christ T, Knaut M, Ravens U (2005) The G protein-gated potassium current I(K,ACh) is constitutively active in patients with chronic atrial fibrillation. Circulation 112:3697–3706

    Article  PubMed  CAS  Google Scholar 

  15. Drews G, Debuyser A, Henquin JC (1994) Significance of membrane repolarization and cyclic AMP changes in mouse pancreatic B-cells for the inhibition of insulin release by galanin. Mol Cell Endocrinol 105:97–102

    Article  PubMed  CAS  Google Scholar 

  16. Dunne MJ, Bullett MJ, Li GD, Wollheim CB, Petersen OH (1989) Galanin activates nucleotide-dependent K+ channels in insulin-secreting cells via a pertussis toxin-sensitive G-protein. EMBO J 8:413–420

    PubMed  CAS  Google Scholar 

  17. Ehrlich JR, Cha TJ, Zhang L, Chartier D, Villeneuve L, Hebert TE, Nattel S (2004) Characterization of a hyperpolarization-activated time-dependent potassium current in canine cardiomyocytes from pulmonary vein myocardial sleeves and left atrium. J Physiol 557:583–597

    Article  PubMed  CAS  Google Scholar 

  18. Ferrer J, Nichols CG, Makhina EN, Salkoff L, Bernstein J, Gerhard D, Wasson J, Ramanadham S, Permutt A (1995) Pancreatic islet cells express a family of inwardly rectifying K+ channel subunits which interact to form G-protein-activated channels. J Biol Chem 270:26086–26091

    Article  PubMed  CAS  Google Scholar 

  19. Fosset M, Schmid-Antomarchi H, de Weille JR, Lazdunski M (1988) Somatostatin activates glibenclamide-sensitive and ATP-regulated K+ channels in insulinoma cells via a G-protein. FEBS Lett 242:94–96

    Article  PubMed  CAS  Google Scholar 

  20. Gromada J, Hoy M, Olsen HL, Gotfredsen CF, Buschard K, Rorsman P, Bokvist K (2001) Gi2 proteins couple somatostatin receptors to low-conductance K+ channels in rat pancreatic alpha-cells. Pflugers Arch 442:19–26

    Article  PubMed  CAS  Google Scholar 

  21. Herbst M, Sasse P, Greger R, Yu H, Hescheler J, Ullrich S (2002) Membrane potential dependent modulations of calcium oscillations in insulin-secreting INS-1 cells. Cell Calcium 31:115–126

    Article  PubMed  CAS  Google Scholar 

  22. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sineauer, Sunderland, MA

    Google Scholar 

  23. Iizuka M, Kubo Y, Tsunenari I, Pan CX, Akiba I, Kono T (1995) Functional characterization and localization of a cardiac-type inwardly rectifying K+ channel. Receptors Channels 3:299–315

    PubMed  CAS  Google Scholar 

  24. Inanobe A, Horio Y, Fujita A, Tanemoto M, Hibino H, Inageda K, Kurachi Y (1999) Molecular cloning and characterization of a novel splicing variant of the Kir3.2 subunit predominantly expressed in mouse testis. J Physiol 521(Pt 1):19–30

    Article  PubMed  CAS  Google Scholar 

  25. Isomoto S, Kondo C, Takahashi N, Matsumoto S, Yamada M, Takumi T, Horio Y, Kurachi Y (1996) A novel ubiquitously distributed isoform of GIRK2 (GIRK2B) enhances GIRK1 expression of the G-protein-gated K+ current in Xenopus oocytes. Biochem Biophys Res Commun 218:286–291

    Article  PubMed  CAS  Google Scholar 

  26. Jin W, Lu Z (1998) A novel high-affinity inhibitor for inward-rectifier K+ channels. Biochemistry 37:13291–13299

    Article  PubMed  CAS  Google Scholar 

  27. Jin W, Lu Z (1999) Synthesis of a stable form of tertiapin: a high-affinity inhibitor for inward-rectifier K+ channels. Biochemistry 38:14286–14293

    Article  PubMed  CAS  Google Scholar 

  28. Josefsen K, Stenvang JP, Kindmark H, Berggren PO, Horn T, Kjaer T, Buschard K (1996) Fluorescence-activated cell sorted rat islet cells and studies of the insulin secretory process. J Endocrinol 149:145–154

    Article  PubMed  CAS  Google Scholar 

  29. Kanjhan R, Coulson EJ, Adams DJ, Bellingham MC (2005) Tertiapin-Q blocks recombinant and native large conductance K+ channels in a use-dependent manner. J Pharmacol Exp Ther 314:1353–1361

    Article  PubMed  CAS  Google Scholar 

  30. Kitamura H, Yokoyama M, Akita H, Matsushita K, Kurachi Y, Yamada M (2000) Tertiapin potently and selectively blocks muscarinic K(+) channels in rabbit cardiac myocytes. J Pharmacol Exp Ther 293:196–205

    PubMed  CAS  Google Scholar 

  31. Kreienkamp HJ, Honck HH, Richter D (1997) Coupling of rat somatostatin receptor subtypes to a G-protein gated inwardly rectifying potassium channel (GIRK1). FEBS Lett 419:92–94

    Article  PubMed  CAS  Google Scholar 

  32. Kume H, Graziano MP, Kotlikoff MI (1992) Stimulatory and inhibitory regulation of calcium-activated potassium channels by guanine nucleotide-binding proteins. Proc Natl Acad Sci U S A 89:11051–11055

    Article  PubMed  CAS  Google Scholar 

  33. Lei Q, Jones MB, Talley EM, Garrison JC, Bayliss DA (2003) Molecular mechanisms mediating inhibition of G protein-coupled inwardly-rectifying K+ channels. Mol Cells 15:1–9

    PubMed  CAS  Google Scholar 

  34. Ma D, Zerangue N, Raab-Graham K, Fried SR, Jan YN, Jan LY (2002) Diverse trafficking patterns due to multiple traffic motifs in G protein-activated inwardly rectifying potassium channels from brain and heart. Neuron 33:715–729

    Article  PubMed  CAS  Google Scholar 

  35. Merglen A, Theander S, Rubi B, Chaffard G, Wollheim CB, Maechler P (2004) Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology 145:667–678

    Article  PubMed  CAS  Google Scholar 

  36. Mirshahi T, Logothetis DE (2002) GIRK channel trafficking: different paths for different family members. Mol Interv 2:289–291

    Article  PubMed  CAS  Google Scholar 

  37. Miyazaki J, Araki K, Yamato E, Ikegami H, Asano T, Shibasaki Y, Oka Y, Yamamura K (1990) Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127:126–132

    Article  PubMed  CAS  Google Scholar 

  38. Nelson CS, Marino JL, Allen CN (1997) Cloning and characterization of Kir3.1 (GIRK1) C-terminal alternative splice variants. Brain Res Mol Brain Res 46:185–196

    Article  PubMed  CAS  Google Scholar 

  39. Nilsson T, Arkhammar P, Rorsman P, Berggren PO (1989) Suppression of insulin release by galanin and somatostatin is mediated by a G-protein. An effect involving repolarization and reduction in cytoplasmic free Ca2+ concentration. J Biol Chem 264:973–980

    PubMed  CAS  Google Scholar 

  40. Olsen ML, Sontheimer H (2004) Mislocalization of Kir channels in malignant glia. Glia 46:63–73

    Article  PubMed  CAS  Google Scholar 

  41. Peleg S, Varon D, Ivanina T, Dessauer CW, Dascal N (2002) G(alpha)(i) controls the gating of the G protein-activated K(+) channel, GIRK. Neuron 33:87–99

    Article  PubMed  CAS  Google Scholar 

  42. Renstrom E, Ding WG, Bokvist K, Rorsman P (1996) Neurotransmitter-induced inhibition of exocytosis in insulin-secreting beta cells by activation of calcineurin. Neuron 17:513–522

    Article  PubMed  CAS  Google Scholar 

  43. Ribalet B, Eddlestone GT (1995) Characterization of the G protein coupling of a somatostatin receptor to the K+ATP channel in insulin-secreting mammalian HIT and RIN cell lines. J Physiol 485(Pt 1):73–86

    PubMed  CAS  Google Scholar 

  44. Ribalet B, Eddlestone GT (1995) Characterization of the G protein coupling of SRIF and beta-adrenergic receptors to the maxi KCa channel in insulin-secreting cells. J Membr Biol 148:111–125

    PubMed  CAS  Google Scholar 

  45. Rorsman P, Bokvist K, Ammala C, Arkhammar P, Berggren PO, Larsson O, Wahlander K (1991) Activation by adrenaline of a low-conductance G protein-dependent K+ channel in mouse pancreatic B cells. Nature 349:77–79

    Article  PubMed  CAS  Google Scholar 

  46. Rorsman P (1997) The pancreatic beta-cell as a fuel sensor: an electrophysiologist’s viewpoint. Diabetologia 40:487–495

    Article  PubMed  CAS  Google Scholar 

  47. Ryan JS, Tao QP, Kelly ME (1998) Adrenergic regulation of calcium-activated potassium current in cultured rabbit pigmented ciliary epithelial cells. J Physiol 511(Pt 1):145–157

    Article  PubMed  CAS  Google Scholar 

  48. Schermerhorn T, Sharp GW (2000) Norepinephrine acts on the KATP channel and produces different effects on [Ca2+]i in oscillating and non-oscillating HIT-T15 cells. Cell Calcium 27:163–173

    Article  PubMed  CAS  Google Scholar 

  49. Schoots O, Wilson JM, Ethier N, Bigras E, Hebert TE, Van Tol HH (1999) Co-expression of human Kir3 subunits can yield channels with different functional properties. Cell Signal 11:871–883

    Article  PubMed  CAS  Google Scholar 

  50. Sharp GW (1996) Mechanisms of inhibition of insulin release. Am J Physiol 271:C1781–C1799

    PubMed  CAS  Google Scholar 

  51. Sieg A, Su J, Munoz A, Buchenau M, Nakazaki M, Aguilar-Bryan L, Bryan J, Ullrich S (2004) Epinephrine-induced hyperpolarization of islet cells without KATP channels. Am J Physiol Endocrinol Metab 286:E463–E471

    Article  PubMed  CAS  Google Scholar 

  52. Smith KE, Walker MW, Artymyshyn R, Bard J, Borowsky B, Tamm JA, Yao WJ, Vaysse PJ, Branchek TA, Gerald C, Jones KA (1998) Cloned human and rat galanin GALR3 receptors. Pharmacology and activation of G-protein inwardly rectifying K+ channels. J Biol Chem 273:23321–23326

    Article  PubMed  CAS  Google Scholar 

  53. Smith PA, Sellers LA, Humphrey PP (2001) Somatostatin activates two types of inwardly rectifying K+ channels in MIN-6 cells. J Physiol 532:127–142

    Article  PubMed  CAS  Google Scholar 

  54. Stoffel M, Espinosa R 3rd, Powell KL, Philipson LH, Le Beau MM, Bell GI (1994) Human G-protein-coupled inwardly rectifying potassium channel (GIRK1) gene (KCNJ3): localization to chromosome 2 and identification of a simple tandem repeat polymorphism. Genomics 21:254–256

    Article  PubMed  CAS  Google Scholar 

  55. Stoffel M, Tokuyama Y, Trabb JB, German MS, Tsaar ML, Jan LY, Polonsky KS, Bell GI (1995) Cloning of rat KATP-2 channel and decreased expression in pancreatic islets of male Zucker diabetic fatty rats. Biochem Biophys Res Commun 212:894–899

    Article  PubMed  CAS  Google Scholar 

  56. Tanizawa Y, Matsubara A, Ueda K, Katagiri H, Kuwano A, Ferrer J, Permutt MA, Oka Y (1996) A human pancreatic islet inwardly rectifying potassium channel: cDNA cloning, determination of the genomic structure and genetic variations in Japanese NIDDM patients. Diabetologia 39:447–452

    Article  PubMed  CAS  Google Scholar 

  57. Tsaur ML, Menzel S, Lai FP, Espinosa R 3rd, Concannon P, Spielman RS, Hanis CL, Cox NJ, Le Beau MM, German MS et al (1995) Isolation of a cDNA clone encoding a KATP channel-like protein expressed in insulin-secreting cells, localization of the human gene to chromosome band 21q22.1, and linkage studies with NIDDM. Diabetes 44:592–596

    Article  PubMed  CAS  Google Scholar 

  58. Vaughn J, Wolford JK, Prochazka M, Permana PA (2000) Genomic structure and expression of human KCNJ9 (Kir3.3/GIRK3). Biochem Biophys Res Commun 274:302–309

    Article  PubMed  CAS  Google Scholar 

  59. Wei J, Hodes ME, Piva R, Feng Y, Wang Y, Ghetti B, Dlouhy SR (1998) Characterization of murine Girk2 transcript isoforms: structure and differential expression. Genomics 51:379–390

    Article  PubMed  CAS  Google Scholar 

  60. Wischmeyer E, Doring F, Spauschus A, Thomzig A, Veh R, Karschin A (1997) Subunit interactions in the assembly of neuronal Kir3.0 inwardly rectifying K+ channels. Mol Cell Neurosci 9:194–206

    Article  PubMed  CAS  Google Scholar 

  61. Wiser O, Qian X, Ehlers M, Ja WW, Roberts RW, Reuveny E, Jan YN, Jan LY (2006) Modulation of basal and receptor-induced GIRK potassium channel activity and neuronal excitability by the mammalian PINS homolog LGN. Neuron 50:561–573

    Article  PubMed  CAS  Google Scholar 

  62. Yamada M, Inanobe A, Kurachi Y (1998) G protein regulation of potassium ion channels. Pharmacol Rev 50:723–760

    PubMed  CAS  Google Scholar 

  63. Yano H, Philipson LH, Kugler JL, Tokuyama Y, Davis EM, Le Beau MM, Nelson DJ, Bell GI, Takeda J (1994) Alternative splicing of human inwardly rectifying K+ channel ROMK1 mRNA. Mol Pharmacol 45:854–860

    PubMed  CAS  Google Scholar 

  64. Yoshimoto Y, Fukuyama Y, Horio Y, Inanobe A, Gotoh M, Kurachi Y (1999) Somatostatin induces hyperpolarization in pancreatic islet alpha cells by activating a G protein-gated K+ channel. FEBS Lett 444:265–269

    Article  PubMed  CAS  Google Scholar 

  65. Zhao Y, Fang Q, Straub SG, Sharp GW (2008) Both Gi and Go heterotrimeric G proteins are required to exert the full effect of norepinephrine on the beta-cell KATP channel. J Biol Chem 283:5306–5316

    Google Scholar 

  66. Zhu L, Wu X, Wu MB, Chan KW, Logothetis DE, Thornhill WB (2001) Cloning and characterization of G protein-gated inward rectifier K+ channel (GIRK1) isoforms from heart and brain. J Mol Neurosci 16:21–32

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Colin Nichols and Dr. Mike Walker for their help, and Dr. Claes Wollheim and Dr. Jun-Ichi Miyazaki for their permission to use the INS-1E and MIN-6 lines, respectively. This work was supported in part by the Minerva Foundation, the Israeli Science Foundation (ISF grant 128/05), and the Y. Leon Benoziyo Institute for Molecular Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eitan Reuveny.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Co-localization of GIRK subunits (red) and glucagon (green) in mouse pancreatic islets. Bar = 50 m (GIF 1.02 MB)

High resolution image file (TIFF 1.13 MB)

Supplementary Fig. 2

Co-localization of GIRK subunits (red) and somatostatin (green) in mouse pancreatic islets. Bar = 50 m (GIF 915 kb)

High resolution image file (TIFF 893 kb)

Supplementary Fig. 3

Co-localization of GIRK subunits (red) and pancreatic polypeptide (green) in mouse pancreatic islets. Bar = 50 m (GIF 0.97 MB)

High resolution image file (TIFF 1.01 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwanir, S., Reuveny, E. Adrenaline-induced hyperpolarization of mouse pancreatic islet cells is mediated by G protein-gated inwardly rectifying potassium (GIRK) channels. Pflugers Arch - Eur J Physiol 456, 1097–1108 (2008). https://doi.org/10.1007/s00424-008-0479-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0479-4

Keywords

Navigation