Skip to main content

Advertisement

Log in

ABCB1 (P-glycoprotein) but not ABCC1 (MRP1) is downregulated in peripheral blood mononuclear cells of spontaneously hypertensive rats

  • Integrative Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Although the kidney is a major target in hypertension, several studies have correlated important immune alterations with the development of hypertension in spontaneously hypertensive rats (SHR), like increased secretion of pro-inflammatory cytokines, inflammatory infiltration in kidneys and thymic atrophy. Because adenosine-triphosphate-binding cassette sub-family B member 1 (ABCB1; P-glycoprotein) and adenosine-triphosphate-binding cassette sub-family C member 1 (ABCC1; multidrug resistance protein 1), two proteins first described in multidrug resistant tumors, physiologically transport several immune mediators and are required for the adequate functioning of the immune system, we aimed to measure the expression and activity of these proteins in peripheral blood mononuclear cells (PBMC), thymocytes, and also kidneys of normotensive Wistar Kyoto rats and SHR. Our results showed that ABCB1, but not ABCC1, activity was diminished (nearly 50%) in PBMC. Moreover, Abcb1b gene was downregulated in PBMC and kidney of SHR and this was not counterbalanced by an upregulation of its homolog Abcb1a, suggesting that the diminished activity is due to downregulation of the gene. No alteration was detected in ABCB1 activity in SHR thymocytes, indicating that this downregulation occurs after lymphocytes leave the primary lymphoid organs. Even though it is not known at present which parameter(s) is(are) responsible for this downregulation, it may contribute for the altered immune response observed in hypertension and to possible altered drug disposition in hypertensive individuals, resulting in greater drug interaction and increased drug toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455(1):152–162

    Article  PubMed  CAS  Google Scholar 

  2. Gotesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62:385–427

    Article  PubMed  CAS  Google Scholar 

  3. Cordon-Cardo C, O’brien JP, Boccia J, Casals D, Bertino JR, Melamed MR (1990) Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem 38(9):1277–1287

    PubMed  CAS  Google Scholar 

  4. Flens MJ, Zaman GJ, Van Der Valk P et al (1996) Tissue distribution of the multidrug resistance protein. Am J Pathol 148:1237–1247

    PubMed  CAS  Google Scholar 

  5. Cole SP, Bhardwaj G, Gerlach JH et al (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258(5088):1650–1654

    Article  PubMed  CAS  Google Scholar 

  6. Cole SP, Deeley RG (1993) Multidrug resistance-associated protein: sequence correction. Science 260(5110):879

    Article  PubMed  CAS  Google Scholar 

  7. Albermann N, Schmitz-Winnenthal FH, Z’graggen K, Volk C, Hoffmann MM, Haefeli WE, Weiss J (2005) Expression of the drug transporters MDR1/ABCB1, MRP1/ABCC1, MRP2/ABCC2, BCRP/ABCG2, and PXR in peripheral blood mononuclear cells and their relationship with the expression in intestine and liver. Biochem Pharmacol 70(6):949–958

    Article  PubMed  CAS  Google Scholar 

  8. Neyfakh AA, Serpinskaya AS, Chervonsky AV, Apasov SG, Kazarov AR (1989) Multidrug-resistance phenotype of a subpopulation of T lymphocytes without drug selection. Exp Cell Res 185:496–505

    Article  PubMed  CAS  Google Scholar 

  9. Chaudhary PM, Mechetner EB, Roninson IB (1992) Expression and activity of the multidrug resistance P-glycoprotein in human peripheral blood lymphocytes. Blood 80:2735–2739

    PubMed  CAS  Google Scholar 

  10. Gupta S, Kim CH, Tsuruo T, Gollapudi S (1992) Preferential expression and activity of multidrug resistance gene 1 product (P-glycoprotein), a functionally active efflux pump, in human CD8+ T cells: a role in cytotoxic effector function. J Clin Immunol 12:451–458

    Article  PubMed  CAS  Google Scholar 

  11. Raghu G, Park SW, Roninson IB, Mechetner EB (1996) Monoclonal antibodies against P-glycoprotein, an MDR1 gene product, inhibit interleukin-2 release from PHA-activated lymphocytes. Exp Hematol 24:1258–1264

    PubMed  CAS  Google Scholar 

  12. Schinkel AH, Smit JJ, van Tellingen O et al (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood–brain barrier and to increased sensitivity to drugs. Cell 77:491–502

    Article  PubMed  CAS  Google Scholar 

  13. Honig SM, Fu S, Mao X, Yopp A, Gunn MD, Randolph GJ, Bromberg JS (2003) FTY720 stimulates multidrug transporter- and cysteinyl leukotriene-dependent T cell chemotaxis to lymph nodes. J Clin Invest 111(5):627–637

    PubMed  CAS  Google Scholar 

  14. Dassa E, Bouige P (2001) The ABC of ABCs: a phylogenetic and functional classification of ABC systems in living organisms. Res Microbiol 152:211–229

    Article  PubMed  CAS  Google Scholar 

  15. Park SW, Lomri N, Simeoni LA, Fruehauf JP, Mechetner E (2003) Analysis of P-glycoprotein-mediated membrane transport in human peripheral blood lymphocytes using the UIC2 shift assay. Cytometry A 53A:67–78

    Article  CAS  Google Scholar 

  16. Cole SP, Deeley RG (2006) Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol Sci 27(8):438–446

    Article  PubMed  CAS  Google Scholar 

  17. Osher E, Weisinger G, Limor R, Tordjman K, Stern N (2006) The 5 lipoxygenase system in the vasculature: emerging role in health and disease. Mol Cell Endocrinol 252(1–2):201–206

    Article  PubMed  CAS  Google Scholar 

  18. Zhuang H, Pin S, Li X, Dore S (2003) Regulation of heme oxygenase expression by cyclopentenone prostaglandins. Exp Biol Med (Maywood) 228(5):499–505

    CAS  Google Scholar 

  19. Musiek ES, Gao L, Milne GL (2005) Cyclopentenone isoprostanes inhibit the inflammatory response in macrophages. J Biol Chem 280(42):35562–35570

    Article  PubMed  CAS  Google Scholar 

  20. Echevarria-Lima J, Kyle-Cezar F, Leite DFP, Capella L, Capella MA, Rumjanek VM (2005) Expression and activity of multidrug resistance protein 1 in a murine thymoma cell line. Immunology 114(4):468–475

    Article  PubMed  CAS  Google Scholar 

  21. van de Ven R, de Jong MC, Reurs AW et al (2006) Dendritic cells require multidrug resistance protein 1 (ABCC1) transporter activity for differentiation. J Immunol 176(9):5191–5198

    PubMed  Google Scholar 

  22. Leite DFP, Echevarria-Lima J, Salgado LT, Capella MAM, Calixto JB, Rumjanek VM (2006) In vivo and in vitro modulation of MDR molecules in murine thymocytes. Int Immunopharmacol 6(2):204–215

    Article  PubMed  CAS  Google Scholar 

  23. Dahl LK, Heine M (1975) Primary role of renal homografts in setting chronic blood pressure levels in rats. Circ Res 36:692–696

    PubMed  CAS  Google Scholar 

  24. Curtis JJ, Luke RG, Dustan HP, Kashgarian M, Whelchel JD, Jones P, Diethelm AG (1983) Remission of essential hypertension after renal transplantation. N Engl J Med 309:1009–1015

    Article  PubMed  CAS  Google Scholar 

  25. Johnson RJ, Rodríguez-Iturbe B, Kang DH, Feig DI, Herrera-Acosta J (2005) A unifying pathway for essential hypertension. Am J Hypertens 18:431–440

    Article  PubMed  Google Scholar 

  26. Khraibi AA, Smith TL, Hutchins PM, Lynch CD, Dusseau JW (1987) Thymectomy delays the development of hypertension in Okamoto spontaneously hypertensive rats. J Hypertens 5(5):537–541

    Article  PubMed  CAS  Google Scholar 

  27. Ba D, Takeichi N, Kodama T, Kobayashi H (1982) Restoration of T cell depression and suppression of blood pressure in spontaneously hypertensive rats (SHR) by thymus grafts or thymus extracts. J Immunol 128(3):1211–1216

    PubMed  CAS  Google Scholar 

  28. Purcell ES, Wood GW, Gattone VH 2nd (1993) Immune system of the spontaneously hypertensive rat: II. Morphology and function. Anat Rec 237(2):236–242

    Article  PubMed  CAS  Google Scholar 

  29. Fannon LD, Braylan RC, Phillips MI (1992) Alterations in lymphocyte populations during development in the spontaneously hypertensive rat. J Hypertens 10:629–634

    Article  PubMed  CAS  Google Scholar 

  30. Pascual VH, Oparil S, Eldridge JH, Jin H, Bost KL, Pascual DW (1992) Spontaneously hypertensive rats: lymphoid depression is age dependent and mediated via a mononuclear cell subpopulation. Am J Physiol Regul Integr Comp Physiol 262:R1–R7

    CAS  Google Scholar 

  31. Chen CM, Schachter D (1993) Elevation of plasma immunoglobulin A in the spontaneously hypertensive rat. Hypertension 21:731–738

    PubMed  CAS  Google Scholar 

  32. Suzuki H, Schmid-Schonbein GW, Suematsu M, DeLano FA, Forrest MJ, Miyasaka M, Zweifach BW (1994) Impaired leukocyte–endothelial cell interaction in spontaneously hypertensive rats. Hypertension 24:719–727

    PubMed  CAS  Google Scholar 

  33. Suzuki H, Delano FA, Jamshidi N et al (1999) Enhanced DNA fragmentation in the thymus of spontaneously hypertensive rats. Am J Physiol 276(6 Pt 2):H2135–H2140

    PubMed  Google Scholar 

  34. Sanz-Rosa D, Oubiña MP, Cediel E, de las Heras N, Vegazo O, Jiménez J, Lahera V, Cachofeiro V (2005) Effect of AT1 receptor antagonism on vascular and circulating inflammatory mediators in SHR: role of NF-κB/IκB system. Am J Physiol Heart Circ Physiol 288:H111–H115

    Article  PubMed  CAS  Google Scholar 

  35. Rodríguez-Iturbe B, Quiroz Y, Ferrebuz A, Parra G, Vaziri ND (2004) Evolution of renal interstitial inflammation and NF-kappa B activation in spontaneously hypertensive rats. Am J Nephrol 24(6):587–594

    Article  PubMed  CAS  Google Scholar 

  36. Aggarwal S, Tsuruo T, Gupta S (1997) Altered expression and function of P-glycoprotein (170 kDa), encoded by the MDR 1 gene, in T cell subsets from aging humans. J Clin Immunol 17(6):448–454

    Article  PubMed  CAS  Google Scholar 

  37. Ernest S, Bello-Reuss E (1999) Secretion of platelet-activating factor is mediated by MDR1 P-glycoprotein in cultured human mesangial cells. J Am Soc Nephrol 10:2306–2231

    PubMed  CAS  Google Scholar 

  38. Kerb R (2006) Implications of genetic polymorphisms in drug transporters for pharmacotherapy. Cancer Lett 234(1):4–33

    Article  PubMed  CAS  Google Scholar 

  39. Shapiro HM, Schildkraut ER, Curbelo R, Turner RB, Webb RH, Brown DC, Block MJ (1977) Cytomat-R: a computer-controlled multiple laser source multiparameter flow cytophotometer system. J Histochem Cytochem. 25(7):836–844

    PubMed  CAS  Google Scholar 

  40. Hoffman RA, Kung PC, Hansen WP, Goldstein G (1980) Simple and rapid measurement of human T lymphocytes and their subclasses in peripheral blood. Proc Natl Acad Sci USA 77(8):4914–4917

    Article  PubMed  CAS  Google Scholar 

  41. van der Kolk DM, de Vries EG, Koning JA, van den Berg E, Muller M, Vellenga E (1998) Activity and expression of the multidrug resistance proteins MRP1 and MRP2 in acute myeloid leukemia cells, tumor cell lines, and normal hematopoietic CD34+ peripheral blood cells. Clin Cancer Res 4(7):1727–1736

    PubMed  Google Scholar 

  42. Morales MM, Capella MA, Sanches MV, Lopes AG, Guggino WB (2000) Modulation of the mdr-1b gene in the kidney of rats subjected to dehydration or a high-salt diet. Pflugers Arch 439(3):356–362

    Article  PubMed  CAS  Google Scholar 

  43. Nascimento CR, Braga F, Capella LS, Santos OR, Lopes AG, Capella MA (2005) Comparative study on the effects of cyclosporin A in renal cells in culture. Nephron Exp Nephrol 99(3):e77–e86

    Article  PubMed  CAS  Google Scholar 

  44. Gedeon C, Behravan J, Koren G, Piquette-Miller M (2006) Transport of glyburide by placental ABC transporters: implications in fetal drug exposure. Placenta 27(11–12):1096–1102

    Article  PubMed  CAS  Google Scholar 

  45. Devault A, Gros P (1990) Two members of the mouse mdr gene family confer multidrug resistance with overlapping but distinct drug specificities. Mol Cell Biol 10:1652–1663

    PubMed  CAS  Google Scholar 

  46. Gros P, Buschman E (1993) The mouse multidrug resistance gene family: structural and functional analysis. Int Rev Cytol 137C:169–197

    PubMed  CAS  Google Scholar 

  47. Ebringer A, Doyle AE (1970) Raised serum IgG levels in hypertension. Br Med J 2(5702):146–148

    Article  PubMed  CAS  Google Scholar 

  48. Olsen F, Rasmussen S (1977) Delayed hypersensitivity and borderline essential hypertension. Acta Pathol Microbiol Scand 85(3):196–198

    CAS  Google Scholar 

  49. Gudbrandsson T, Hansson L, Herlitz H, Lindholm L, Nilsson LA (1981) Immunological changes in patients with previous malignant essential hypertension. Lancet 1(8217):406–408

    Article  PubMed  CAS  Google Scholar 

  50. Mahmoud F, Omu A, Abul H, El-Rayes S, Haines D (2003) Lymphocyte subpopulations in pregnancy complicated by hypertension. J Obstet Gynaecol 23(1):20–26

    Article  PubMed  Google Scholar 

  51. Sukhai M, Yong A, Pak A, Piquette-Miller M (2001) Decreased expression of P-glycoprotein in interleukin-1 beta and interleukin-6 treated rat hepatocytes. Inflamm Res 50(7):362–370

    Article  PubMed  CAS  Google Scholar 

  52. Belliard AM, Lacour B, Farinotti R, Leroy C (2004) Effect of tumor necrosis factor-alpha and interferon-gamma on intestinal P-glycoprotein expression, activity, and localization in Caco-2 cells. J Pharm Sci 93(6):1524–1536

    Article  PubMed  CAS  Google Scholar 

  53. Vos TA, Hooiveld GJ, Koning H, Childs S, Meijer DK, Moshage H, Jansen PL, Muller M (1998) Up-regulation of the multidrug resistance genes, Mrp1 and Mdr1b, and down-regulation of the organic anion transporter, Mrp2, and the bile salt transporter, Spgp, in endotoxemic rat liver. Hepatology 28(6):1637–1644

    Article  PubMed  CAS  Google Scholar 

  54. Tofovic SP, Zacharia LC, Carcillo JA, Jackson EK (2000) Inhibition of cytokine release by and cardiac effects of type IV phosphodiesterase inhibition in early, profound endotoxaemia in vivo. Clin Exp Pharmacol Physiol 27(10):787–792

    Article  PubMed  CAS  Google Scholar 

  55. Manning RD Jr, Tian N, Meng S (2005) Oxidative stress and antioxidant treatment in hypertension and the associated renal damage. Am J Nephrol 25(4):311–317

    Article  PubMed  CAS  Google Scholar 

  56. Ando H, Zhou J, Macova M, Imboden H, Saavedra JM (2004) Angiotensin II AT1 receptor blockade reverses pathological hypertrophy and inflammation in brain microvessels of spontaneously hypertensive rats. Stroke 35(7):1726–1731

    Article  PubMed  CAS  Google Scholar 

  57. Rodríguez-Iturbe B, Pons H, Herrera-Acosta J, Johnson RJ (2001) The role of immunocompetent cells in non-immune renal diseases. Kidney Int 59:1626–1840

    Article  PubMed  Google Scholar 

  58. Quiroz Y, Pons H, Gordon KI et al (2001) Mycophenolate mofetil prevents the salt-sensitive hypertension resulting from short-term nitric oxide synthesis inhibition. Am J Physiol Renal Physiol 281:F38–F47

    PubMed  CAS  Google Scholar 

  59. Rodríguez-Iturbe B, Pons H, Quiroz Y et al (2001) Mycophenolate mofetil prevents salt-sensitive hypertension resulting from angiotensin II exposure. Kidney Int 59:2222–2232

    PubMed  Google Scholar 

  60. Rodríguez-Iturbe B, Quiroz Y, Nava M, Bonet L, Chavez M, Herrera-Acosta J, Johnson RJ, Pons HA (2002) Reduction of renal immune cell infiltration results in blood pressure control in genetically hypertensive rats. Am J Physiol Renal Physiol 282(2):F191–F201

    PubMed  Google Scholar 

  61. Ruiz-Ortega M, Esteban V, Ruperez M, Sanchez-Lopez E, Rodriguez-Vita J, Carvajal G, Egido J (2006) Renal and vascular hypertension-induced inflammation: role of angiotensin II. Curr Opin Nephrol Hypertens 15(2):159–166

    Article  PubMed  CAS  Google Scholar 

  62. Savoia C, Schiffrin EL (2006) Inflammation in hypertension. Curr Opin Nephrol Hypertens 15(2):152–158

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Fundação Ary Frauzino, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, and Conselho Nacional de Desenvolvimento Científico e Tecnológico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcia A. M. Capella.

Additional information

Raphael C. Valente and Márcia A. M. Capella contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valente, R.C., Capella, L.S., Nascimento, C.R. et al. ABCB1 (P-glycoprotein) but not ABCC1 (MRP1) is downregulated in peripheral blood mononuclear cells of spontaneously hypertensive rats. Pflugers Arch - Eur J Physiol 456, 359–368 (2008). https://doi.org/10.1007/s00424-007-0397-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0397-x

Keywords

Navigation