Skip to main content

Advertisement

Log in

Caloxins: a novel class of selective plasma membrane Ca2+ pump inhibitors obtained using biotechnology

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Plasma membrane Ca2+ pumps (PMCA) extrude cellular Ca2+ with a high affinity and hence play a major role in Ca2+ homeostasis and signaling. Caloxins (selective extracellular PMCA inhibitors) would aid in elucidating the physiology of PMCA. PMCA proteins have five extracellular domains (exdoms). Our hypotheses are: 1) peptides that bind selectively to each exdom can be invented by screening a random peptide library, and 2) a peptide can modulate PMCA activity by binding to one of the exdoms. The first caloxin 2a1, selected for binding exdom 2 was selective for PMCA (Ki = 529 μM). It has been used to examine the physiological role of PMCA. PMCA isoforms are encoded by four genes. PMCA isoform expression differs in various cell types, with PMCA1 and 4 being the most widely distributed. There are differences between PMCA1-4 exdom 1 sequences, which may be exploited for inventing isoform selective caloxins. Using exdom 1 of PMCA4 as a target, modified screening procedures and mutagenesis led to the high-affinity caloxin 1c2 (Ki = 2.3 μM for PMCA4). It is selective for PMCA4 over PMCA1, 2, or 3. We hope that caloxins can be used to discern the roles of individual PMCA isoforms in Ca2+ homeostasis and signaling. Caloxins may also become clinically useful in cardiovascular diseases, neurological disorders, retinopathy, cancer, and contraception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Ca2+i:

cytosolic [Ca2+]

Exdom:

extracellular domain

nNOS:

neuronal nitric oxide synthase

NCX:

Na+-Ca2+ exchanger

PM:

plasma membrane

PMCA:

plasma membrane Ca2+ pump

SERCA:

sarco/endoplasmic reticulum Ca2+ pump

References

  1. Adamo HP, Verma AK, Sanders MA, Heim R, Salisbury JL, Wieben ED, Penniston JT (1992) Overexpression of the erythrocyte plasma membrane Ca2+ pump in COS-1 cells. Biochem J 285(Pt 3):791–797

    PubMed  CAS  Google Scholar 

  2. Aiton JF, Cramb G (1985) The effects of vanadate on rabbit ventricular muscle adenylate cyclase and sodium pump activities. Biochem Pharmacol 34:1543–1548

    PubMed  CAS  Google Scholar 

  3. Amino K, Honda Y, Ide C, Fujimoto T (1997) Distribution of plasmalemmal Ca(2+)-pump and caveolin in the corneal epithelium during the wound healing process. Curr Eye Res 16:1088–1095

    PubMed  CAS  Google Scholar 

  4. Apell HJ (2004) How do P-type ATPases transport ions? Bioelectrochemistry 63:149–156

    PubMed  CAS  Google Scholar 

  5. Aung CS, Kruger WA, Poronnik P, Roberts-Thomson SJ, Monteith GR (2007) Plasma membrane Ca2+-ATPase expression during colon cancer cell line differentiation. Biochem Biophys Res Commun 355:932–936

    PubMed  CAS  Google Scholar 

  6. Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP, Kobeissi ZA, Hobai IA, Lemmon CA, Burnett AL, O'Rourke B, Rodriguez ER, Huang PL, Lima JA, Berkowitz DE, Hare JM (2002) Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416:337–339

    PubMed  CAS  Google Scholar 

  7. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    PubMed  CAS  Google Scholar 

  8. Brandt PC, Vanaman TC (1996) The plasma membrane calcium pump: not just another pretty ion translocase. Glycobiology 6:665–668

    PubMed  CAS  Google Scholar 

  9. Bredt DS (2003) Nitric oxide signaling specificity—the heart of the problem. J Cell Sci 116:9–15

    PubMed  CAS  Google Scholar 

  10. Brini M, Bano D, Manni S, Rizzuto R, Carafoli E (2000) Effects of PMCA and SERCA pump overexpression on the kinetics of cell Ca(2+) signalling. EMBO J 19:4926–4935

    PubMed  CAS  Google Scholar 

  11. Brini M, Coletto L, Pierobon N, Kraev N, Guerini D, Carafoli E (2003) A comparative functional analysis of plasma membrane Ca2+ pump isoforms in intact cells. J Biol Chem 278:24500–24508

    PubMed  CAS  Google Scholar 

  12. Burette A, Rockwood JM, Strehler EE, Weinberg RJ (2003) Isoform-specific distribution of the plasma membrane Ca2+ ATPase in the rat brain. J Comp Neurol 467:464–476

    PubMed  CAS  Google Scholar 

  13. Cantley LC Jr, Josephson L, Warner R, Yanagisawa M, Lechene C, Guidotti G (1977) Vanadate is a potent (Na,K)-ATPase inhibitor found in ATP derived from muscle. J Biol Chem 252:7421–7423

    PubMed  CAS  Google Scholar 

  14. Carafoli E (1991) Calcium pump of the plasma membrane. Physiol Rev 71:129–153

    PubMed  CAS  Google Scholar 

  15. Carafoli E (1992) The Ca2+ pump of the plasma membrane. J Biol Chem 267:2115–2118

    PubMed  CAS  Google Scholar 

  16. Carafoli E (1994) Biogenesis: plasma membrane calcium ATPase: 15 years of work on the purified enzyme. FASEB J 8:993–1002

    PubMed  CAS  Google Scholar 

  17. Carafoli E (1997) Plasma membrane calcium pump: structure, function and relationships. Basic Res Cordial 92(Suppl 1):59–61

    CAS  Google Scholar 

  18. Carafoli E (2002) Calcium signaling: a tale for all seasons. Proc Natl Acad Sci U S A 99:1115–1122

    PubMed  CAS  Google Scholar 

  19. Carafoli E, Brini M (2000) Calcium pumps: structural basis for and mechanism of calcium transmembrane transport. Curr Opin Chem Biol 4:152–161

    PubMed  CAS  Google Scholar 

  20. Carafoli E, Garcia-Martin E, Guerini D (1996) The plasma membrane calcium pump: recent developments and future perspectives. Experientia 52:1091–1100

    PubMed  CAS  Google Scholar 

  21. Caride AJ, Filoteo AG, Penheiter AR, Paszty K, Enyedi A, Penniston JT (2001) Delayed activation of the plasma membrane calcium pump by a sudden increase in Ca2+: fast pumps reside in fast cells. Cell Calcium 30:49–57

    PubMed  CAS  Google Scholar 

  22. Caride AJ, Filoteo AG, Enyedi A, Verma AK, Penniston JT (1996) Detection of isoform 4 of the plasma membrane calcium pump in human tissues by using isoform-specific monoclonal antibodies. Biochem J 316:353–359

    PubMed  CAS  Google Scholar 

  23. Caride AJ, Filoteo AG, Penniston JT, Strehler EE (2007) The plasma membrane Ca2+ pump isoform 4a differs from isoform 4b in the mechanism of calmodulin binding and activation kinetics. Implications for Ca2+ signaling. J Biol Chem, epub PMID: 17595168

  24. Caride AJ, Penheiter AR, Filoteo AG, Bajzer Z, Enyedi A, Penniston JT (2001) The plasma membrane calcium pump displays memory of past calcium spikes. Differences between isoforms 2b and 4b. J Biol Chem 276:39797–39804

    PubMed  CAS  Google Scholar 

  25. Cartwright EJ, Oceandy D, Neyses L (2007) Plasma membrane calcium ATPase and its relationship to nitric oxide signaling in the heart. Ann N Y Acad Sci 1099:247–253

    PubMed  CAS  Google Scholar 

  26. Casteels R, Droogmans G (1982) Membrane potential and excitation–contraction coupling in smooth muscle. Fed Proc 41:2879–2882

    PubMed  CAS  Google Scholar 

  27. Chaudhary J, Walia M, Matharu J, Escher E, Grover AK (2001) Caloxin: a novel plasma membrane Ca2+ pump inhibitor. Am J Physiol Cell Physiol 280:C1027–C1030

    PubMed  CAS  Google Scholar 

  28. Chen J, McLean PA, Neel BG, Okunade G, Shull GE, Wortis HH (2004) CD22 attenuates calcium signaling by potentiating plasma membrane calcium-ATPase activity. Nat Immunol 5:651–657

    PubMed  CAS  Google Scholar 

  29. Cho WJ, Daniel EE (2005) Proteins of interstitial cells of Cajal and intestinal smooth muscle, colocalized with caveolin-1. Am J Physiol Gastrointest Liver Physiol 288:G571–G585

    PubMed  CAS  Google Scholar 

  30. Clark K, Borchman D, Tang D (2007) The influence of the inhibitor caloxin on the PMCA pump in organ cultured porcine lenses and human lens cell cultures. http://www.kyacademyofscience.org/members/abstracts/health/K.%20Clark14934.doc

  31. Daniel EE, El Yazbi A, Cho WJ (2006) Caveolae and calcium handling, a review and a hypothesis. J Cell Mol Med 10:529–544

    PubMed  CAS  Google Scholar 

  32. Daniel EE, Jury J, Wang YF (2001) nNOS in canine lower esophageal sphincter: colocalized with Cav-1 and Ca2+-handling proteins? Am J Physiol Gastrointest Liver Physiol 281:G1101–G1114

    PubMed  CAS  Google Scholar 

  33. Darby PJ, Kwan CY, Daniel EE (2000) Caveolae from canine airway smooth muscle contain the necessary components for a role in Ca(2+) handling. Am J Physiol Lung Cell Mol Physiol 279:L1226–L1235

    PubMed  CAS  Google Scholar 

  34. De Luisi A, Hofer AM (2003) Evidence that Ca(2+) cycling by the plasma membrane Ca(2+)-ATPase increases the 'excitability' of the extracellular Ca(2+)-sensing receptor. J Cell Sci 116:1527–1538

    PubMed  Google Scholar 

  35. DeMarco SJ, Strehler EE (2001) Plasma membrane Ca2+-atpase isoforms 2b and 4b interact promiscuously and selectively with members of the membrane-associated guanylate kinase family of PDZ (PSD95/Dlg/ZO-1) domain-containing proteins. J Biol Chem 276:21594–21600

    PubMed  CAS  Google Scholar 

  36. Dode L, Vilsen B, Van Baelen K, Wuytack F, Clausen JD, Andersen JP (2002) Dissection of the functional differences between sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 1 and 3 isoforms by steady-state and transient kinetic analyses. J Biol Chem 277:45579–45591

    PubMed  CAS  Google Scholar 

  37. Domi T, Di Leva F, Fedrizzi L, Rimessi A, Brini M (2007) Functional specificity of PMCA isoforms? Ann N Y Acad Sci 1099:237–246

    PubMed  CAS  Google Scholar 

  38. Enyedi A, Verma AK, Filoteo AG, Penniston JT (1996) Protein kinase C activates the plasma membrane Ca2+ pump isoform 4b by phosphorylation of an inhibitory region downstream of the calmodulin-binding domain. J Biol Chem 271:32461–32467

    PubMed  CAS  Google Scholar 

  39. Fanning AS, Anderson JM (1999) PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. J Clin Invest 103:767–772

    Article  PubMed  CAS  Google Scholar 

  40. Filoteo AG, Elwess NL, Enyedi A, Caride A, Aung HH, Penniston JT (1997) Plasma membrane Ca2+ pump in rat brain. Patterns of alternative splices seen by isoform-specific antibodies. J Biol Chem 272:23741–23747

    PubMed  CAS  Google Scholar 

  41. Frieden M, Malli R, Samardzija M, Demaurex N, Graier WF (2002) Subplasmalemmal endoplasmic reticulum controls K(Ca) channel activity upon stimulation with a moderate histamine concentration in a human umbilical vein endothelial cell line. J Physiol 540:73–84

    PubMed  CAS  Google Scholar 

  42. Fujimoto T (1993) Calcium pump of the plasma membrane is localized in caveolae. J Cell Biol 120:1147–1157

    PubMed  CAS  Google Scholar 

  43. Garcia ME, Del Zotto H, Caride AJ, Filoteo AG, Penniston JT, Rossi JP, Gagliardino JJ (2002) Expression and cellular distribution pattern of plasma membrane calcium pump isoforms in rat pancreatic islets. J Membr Biol 185:17–23

    PubMed  CAS  Google Scholar 

  44. Gros R, Afroze T, You XM, Kabir G, Van Wert R, Kalair W, Hoque AE, Mungrue IN, Husain M (2003) Plasma membrane calcium ATPase overexpression in arterial smooth muscle increases vasomotor responsiveness and blood pressure. Circ Res 93:614–621

    PubMed  CAS  Google Scholar 

  45. Grover AK, Kwan CY, Daniel EE (1982) Ca2+ dependence of calcium uptake by rat myometrium plasma membrane-enriched fraction. Am J Physiol 242:C278–C282

    PubMed  CAS  Google Scholar 

  46. Grover AK, Kwan CY, Rangachari PK, Daniel EE (1983) Na–Ca exchange in a smooth muscle plasma membrane-enriched fraction. Am J Physiol 244:C158–C165

    PubMed  CAS  Google Scholar 

  47. Grover AK, Samson SE (1986) Pig coronary artery smooth muscle: substrate and pH dependence of the two calcium pumps. Am J Physiol 251:C529–C534

    PubMed  CAS  Google Scholar 

  48. Guerini D (1998) The significance of the isoforms of plasma membrane calcium ATPase. Cell Tissue Res 292:191–197

    PubMed  CAS  Google Scholar 

  49. Guerini D, Foletti D, Vellani F, Carafoli E (1996) Mutation of conserved residues in transmembrane domains 4, 6 and 8 causes loss of Ca2+ transport by the plasma membrane Ca2+ pump. Biochemistry 35:3290–3296

    PubMed  CAS  Google Scholar 

  50. Hammes A, Oberdorf S, Strehler EE, Stauffer T, Carafoli E, Vetter H, Neyses L (1994) Differentiation-specific isoform mRNA expression of the calmodulin-dependent plasma membrane Ca(2+)-ATPase. FASEB J 8:428–435

    PubMed  CAS  Google Scholar 

  51. Hammes A, Oberdorf-Maass S, Jenatschke S, Pelzer T, Maass A, Gollnick F, Meyer R, Afflerbach J, Neyses L (1996) Expression of the plasma membrane Ca2+-ATPase in myogenic cells. J Biol Chem 271:30816–30822

    PubMed  CAS  Google Scholar 

  52. Hammes A, Oberdorf-Maass S, Rother T, Nething K, Gollnick F, Linz KW, Meyer R, Hu K, Han H, Gaudron P, Ertl G, Hoffmann S, Ganten U, Vetter R, Schuh K, Benkwitz C, Zimmer HG, Neyses L (1998) Overexpression of the sarcolemmal calcium pump in the myocardium of transgenic rats. Circ Res 83:877–888

    PubMed  CAS  Google Scholar 

  53. Helmich-de Jong ML, van Duynhoven JP, Schuurmans Stekhoven FM, De Pont JJ (1986) Eosin, a fluorescent marker for the high-affinity ATP site of (K+ + H+)-ATPase. Biochim Biophys Acta 858:254–262

    PubMed  CAS  Google Scholar 

  54. Holmes ME, Samson SE, Wilson JX, Dixon SJ, Grover AK (2000) Ascorbate transport in pig coronary artery smooth muscle: Na(+) removal and oxidative stress increase loss of accumulated cellular ascorbate. J Vasc Res 37:390–398

    PubMed  CAS  Google Scholar 

  55. Inesi G, Lewis D, Ma H, Prasad A, Toyoshima C (2006) Concerted conformational effects of Ca(2+) and ATP are required for activation of sequential reactions in the Ca(2+) ATPase (SERCA) catalytic cycle(,). Biochemistry 45:13769–13778

    PubMed  CAS  Google Scholar 

  56. Jefferies D (1998) Selection of novel ligands from phage display libraries: an alternative approach to drug and vaccine discovery? Parasitol Today 14:202–206

    PubMed  CAS  Google Scholar 

  57. Jensen TP, Filoteo AG, Knopfel T, Empson RM (2007) Presynaptic plasma membrane Ca2+ ATPase isoform 2a regulates excitatory synaptic transmission in rat hippocampal CA3. J Physiol 579:85–99

    PubMed  CAS  Google Scholar 

  58. Kamagate A, Herchuelz A, Bollen A, Van Eylen F (2000) Expression of multiple plasma membrane Ca(2+)-ATPases in rat pancreatic islet cells. Cell Calcium 27:231–246

    PubMed  CAS  Google Scholar 

  59. Kamijo T, Gonzalez JM, Jost LJ, Barrios R, Suki WN (1996) Renal abnormality of calcium handling in spontaneously hypertensive rats. Kidney Int Suppl 55:S166–S168

    Google Scholar 

  60. Kawano S, Otsu K, Shoji S, Yamagata K, Hiraoka M (2003) Ca(2+) oscillations regulated by Na(+)-Ca(2+) exchanger and plasma membrane Ca(2+) pump induce fluctuations of membrane currents and potentials in human mesenchymal stem cells. Cell Calcium 34:145–156

    PubMed  CAS  Google Scholar 

  61. Klaven NB, Pershadsingh HA, Henius GV, Laris PC, Long JW, Jr, McDonald JM (1983) A high-affinity, calmodulin-sensitive (Ca2+ + Mg2+)-ATPase and associated calcium-transport pump in the Ehrlich ascites tumor cell plasma membrane. Arch Biochem Biophys 226:618–628

    PubMed  CAS  Google Scholar 

  62. Kozel PJ, Friedman RA, Erway LC, Yamoah EN, Liu LH, Riddle T, Duffy JJ, Doetschman T, Miller ML, Cardell EL, Shull GE (1998) Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2. J Biol Chem 273:18693–18696

    PubMed  CAS  Google Scholar 

  63. Krizaj D, Copenhagen DR (1998) Compartmentalization of calcium extrusion mechanisms in the outer and inner segments of photoreceptors. Neuron 21:249–256

    PubMed  CAS  Google Scholar 

  64. Krizaj D, DeMarco SJ, Johnson J, Strehler EE, Copenhagen DR (2002) Cell-specific expression of plasma membrane calcium ATPase isoforms in retinal neurons. J Comp Neurol 451:1–21

    PubMed  CAS  Google Scholar 

  65. Kurnellas MP, Nicot A, Shull GE, Elkabes S (2005) Plasma membrane calcium ATPase deficiency causes neuronal pathology in the spinal cord: a potential mechanism for neurodegeneration in multiple sclerosis and spinal cord injury. FASEB J 19:298–300

    PubMed  CAS  Google Scholar 

  66. Kwan CY, Belbeck L, Daniel EE (1980) Abnormal biochemistry of vascular smooth muscle plasma membrane isolated from hypertensive rats. Mol Pharmacol 17:137–140

    PubMed  CAS  Google Scholar 

  67. Lee WJ, Roberts-Thomson SJ, Holman NA, May FJ, Lehrbach GM, Monteith GR (2002) Expression of plasma membrane calcium pump isoform mRNAs in breast cancer cell lines. Cell Signal 14:1015–1022

    PubMed  CAS  Google Scholar 

  68. Lee WJ, Roberts-Thomson SJ, Monteith GR (2005) Plasma membrane calcium-ATPase 2 and 4 in human breast cancer cell lines. Biochem Biophys Res Commun 337:779–783

    PubMed  CAS  Google Scholar 

  69. Lee WJ, Robinson JA, Holman NA, McCall MN, Roberts-Thomson SJ, Monteith GR (2005) Antisense-mediated Inhibition of the plasma membrane calcium-ATPase suppresses proliferation of MCF-7 cells. J Biol Chem 280:27076–27084

    PubMed  CAS  Google Scholar 

  70. Lehotsky J, Kaplan P, Murin R, Raeymaekers L (2002) The role of plasma membrane Ca2+ pumps (PMCAs) in pathologies of mammalian cells. Front Biosci 7:d53–d84

    PubMed  CAS  Google Scholar 

  71. Liu BF, Xu X, Fridman R, Muallem S, Kuo TH (1996) Consequences of functional expression of the plasma membrane Ca2+ pump isoform 1a. J Biol Chem 271:5536–5544

    PubMed  CAS  Google Scholar 

  72. Liu L, Ishida Y, Okunade G, Pyne-Geithman GJ, Shull GE, Paul RJ (2007) Distinct roles of PMCA isoforms in Ca2+ homeostasis of bladder smooth muscle: evidence from PMCA gene-ablated mice. Am J Physiol Cell Physiol 292:C423–C431

    PubMed  CAS  Google Scholar 

  73. Liu L, Ishida Y, Okunade G, Shull GE, Paul RJ (2006) Role of plasma membrane Ca2+-ATPase in contraction-relaxation processes of the bladder: evidence from PMCA gene-ablated mice. Am J Physiol Cell Physiol 290:C1239–C1247

    PubMed  CAS  Google Scholar 

  74. Marian MJ, Li H, Borchman D, Paterson CA (2005) Plasma membrane Ca2+-ATPase expression in the human lens. Exp Eye Res 81:57–64

    PubMed  CAS  Google Scholar 

  75. Marian MJ, Mukhopadhyay P, Borchman D, Tang D, Paterson CA (2007) Regulation of sarco/endoplasmic and plasma membrane calcium ATPase gene expression by calcium in cultured human lens epithelial cells. Cell Calcium 41:87–95

    PubMed  CAS  Google Scholar 

  76. Marin J, Encabo A, Briones A, Garcia-Cohen EC, Alonso MJ (1999) Mechanisms involved in the cellular calcium homeostasis in vascular smooth muscle: calcium pumps. Life Sci 64:279–303

    PubMed  CAS  Google Scholar 

  77. Marks JD, Bradbury A (2004) Selection of human antibodies from phage display libraries. Methods Mol Biol 248:161–176

    PubMed  CAS  Google Scholar 

  78. Martin V, Bredoux R, Corvazier E, Papp B, Enouf J (2000) Platelet Ca(2+)ATPases: a plural, species-specific, and multiple hypertension-regulated expression system. Hypertension 35:91–102

    PubMed  Google Scholar 

  79. Missiaen L, De Smedt H, Droogmans G, Himpens B, Casteels R (1992) Calcium ion homeostasis in smooth muscle. Pharmacol Ther 56:191–231

    PubMed  CAS  Google Scholar 

  80. Moller JV, Juul B, le Maire M (1996) Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta 1286:1–51

    PubMed  Google Scholar 

  81. Monteith GR, McAndrew D, Faddy HM, Roberts-Thomson SJ (2007) Calcium and cancer: targeting Ca(2+) transport. Nat Rev Cancer 7:519–530

    PubMed  CAS  Google Scholar 

  82. Monteith GR, Roufogalis BD (1995) The plasma membrane calcium pump–a physiological perspective on its regulation. Cell Calcium 18:459–470

    PubMed  CAS  Google Scholar 

  83. Morgans CW, El Far O, Berntson A, Wassle H, Taylor WR (1998) Calcium extrusion from mammalian photoreceptor terminals. J Neurosci 18:2467–2474

    PubMed  CAS  Google Scholar 

  84. Nicot A, Ratnakar PV, Ron Y, Chen CC, Elkabes S (2003) Regulation of gene expression in experimental autoimmune encephalomyelitis indicates early neuronal dysfunction. Brain 126:398–412

    PubMed  Google Scholar 

  85. Niggli V, Adunyah ES, Penniston JT, Carafoli E (1981) Purified (Ca2+-Mg2+)-ATPase of the erythrocyte membrane. Reconstitution and effect of calmodulin and phospholipids. J Biol Chem 256:395–401

    PubMed  CAS  Google Scholar 

  86. Okunade GW, Miller ML, Pyne GJ, Sutliff RL, O'Connor KT, Neumann JC, Andringa A, Miller DA, Prasad V, Doetschman T, Paul RJ, Shull GE (2004) Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J Biol Chem 279:33742–33750

    PubMed  CAS  Google Scholar 

  87. Osborn KD, Zaidi A, Mandal A, Urbauer RJ, Johnson CK (2004) Single-molecule dynamics of the calcium-dependent activation of plasma-membrane Ca2+-ATPase by calmodulin. Biophys J 87:1892–1899

    PubMed  CAS  Google Scholar 

  88. Pande J, Grover AK (2005) Plasma membrane calcium pumps in smooth muscle: from fictional molecules to novel inhibitors. Can J Physiol Pharmacol 83:743–754

    PubMed  CAS  Google Scholar 

  89. Pande J, Mallhi KK, Grover AK (2005) A novel plasma membrane Ca(2+)-pump inhibitor: caloxin 1A1. Eur J Pharmacol 508:1–6

    PubMed  CAS  Google Scholar 

  90. Pande J, Mallhi KK, Grover AK (2005) Role of third extracellular domain of plasma membrane Ca2+-Mg2+-ATPase based on the novel inhibitor caloxin 3A1. Cell Calcium 37:245–250

    PubMed  CAS  Google Scholar 

  91. Pande J, Mallhi KK, Sawh A, Szewczyk MM, Simpson F, Grover AK (2006) Aortic smooth muscle and endothelial plasma membrane Ca2+ pump isoforms are inhibited differently by the extracellular inhibitor caloxin 1b1. Am J Physiol Cell Physiol 290:C1341–C1349

    PubMed  CAS  Google Scholar 

  92. Pande, J, Szewczyk, M, Kuszczak, I, Grover S, Escher E, Grover AK (2007) Functional effects of caloxin 1c2, a novel engineered selective inhibitor of plasma membrane Ca2+- pump isoform 4, on coronary artery. 2007 J Cell Mol Med. in press

  93. Philipson KD, Nicoll DA, Ottolia M, Quednau BD, Reuter H, John S, Qiu Z (2002) The Na+/Ca2+ exchange molecule: an overview. Ann N Y Acad Sci 976:1–10

    Article  PubMed  CAS  Google Scholar 

  94. Prasad V, Okunade G, Liu L, Paul RJ, Shull GE (2007) Distinct phenotypes among plasma membrane Ca2+-ATPase knockout mice. Ann N Y Acad Sci 1099:276–286

    PubMed  CAS  Google Scholar 

  95. Reinhardt TA, Lippolis JD, Shull GE, Horst RL (2004) Null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2 impairs calcium transport into milk. J Biol Chem 279:42369–42373

    PubMed  CAS  Google Scholar 

  96. Ribiczey P, Tordai A, Andrikovics H, Filoteo AG, Penniston JT, Enouf J, Enyedi A, Papp B, Kovacs T (2007) Isoform-specific up-regulation of plasma membrane Ca(2+)ATPase expression during colon and gastric cancer cell differentiation. Cell Calcium epub. PMID: 17433436

  97. Rossi JP, Villamil AM, Echarte MM, Alzugaray ME, Borelli MI, Garcia ME, Pande J, Grover AK, Gagliardino JJ (2006) Plasma membrane calcium pump activity in rat pancreatic islets: an accurate method to measure its calcium-dependent modulation. Cell Biochem Biophys. 46:193–200

    PubMed  CAS  Google Scholar 

  98. Saito K, Uzawa K, Endo Y, Kato Y, Nakashima D, Ogawara K, Shiba M, Bukawa H, Yokoe H, Tanzawa H (2006) Plasma membrane Ca2+ ATPase isoform 1 down-regulated in human oral cancer. Oncol Rep 15:49–55

    PubMed  CAS  Google Scholar 

  99. Salvador JM, Inesi G, Rigaud JL, Mata AM (1998) Ca2+ transport by reconstituted synaptosomal ATPase is associated with H+ countertransport and net charge displacement. J Biol Chem 273:18230–18234

    PubMed  CAS  Google Scholar 

  100. Scheuss V, Yasuda R, Sobczyk A, Svoboda K (2006) Nonlinear [Ca2+] signaling in dendrites and spines caused by activity-dependent depression of Ca2+ extrusion. J Neurosci 26:8183–8194

    PubMed  CAS  Google Scholar 

  101. Schuh K, Cartwright EJ, Jankevics E, Bundschu K, Liebermann J, Williams JC, Armesilla AL, Emerson M, Oceandy D, Knobeloch KP, Neyses L (2004) Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J Biol Chem 279:28220–28226

    PubMed  CAS  Google Scholar 

  102. Schuh K, Quaschning T, Knauer S, Hu K, Kocak S, Roethlein N, Neyses L (2003) Regulation of vascular tone in animals overexpressing the sarcolemmal calcium pump. J Biol Chem 278:41246–41252

    PubMed  CAS  Google Scholar 

  103. Schuh K, Uldrijan S, Telkamp M, Rothlein N, Neyses L (2001) The plasmamembrane calmodulin-dependent calcium pump: a major regulator of nitric oxide synthase I. J Cell Biol 155:201–205

    PubMed  CAS  Google Scholar 

  104. Schultz JM, Yang Y, Caride AJ, Filoteo AG, Penheiter AR, Lagziel A, Morell RJ, Mohiddin SA, Fananapazir L, Madeo AC, Penniston JT, Griffith AJ (2005) Modification of human hearing loss by plasma-membrane calcium pump PMCA2. N Engl J Med 352:1557–1564

    PubMed  CAS  Google Scholar 

  105. Sears CE, Bryant SM, Ashley EA, Lygate CA, Rakovic S, Wallis HL, Neubauer S, Terrar DA, Casadei B (2003) Cardiac nNOS isoform regulates myocardial contraction and calcium handling. Circ Res 92:e52–e59

    PubMed  CAS  Google Scholar 

  106. Sepulveda MR, Berrocal-Carrillo M, Gasset M, Mata AM (2006) The plasma membrane Ca2+-ATPase isoform 4 is localized in lipid rafts of cerebellum synaptic plasma membranes. J Biol Chem 281:447-453

    PubMed  CAS  Google Scholar 

  107. Shull GE, Okunade G, Liu LH, Kozel P, Periasamy M, Lorenz JN, Prasad V (2003) Physiological functions of plasma membrane and intracellular Ca2+ pumps revealed by analysis of null mutants. Ann N Y Acad Sci 986:453–460

    Article  PubMed  CAS  Google Scholar 

  108. Skou JC, Esmann M (1981) Eosin, a fluorescent probe of ATP binding to the (Na+ + K+)-ATPase. Biochim Biophys Acta 647:232–240

    PubMed  CAS  Google Scholar 

  109. Stauffer TP, Guerini D, Carafoli E (1995) Tissue distribution of the four gene products of the plasma membrane Ca2+ pump. A study using specific antibodies. J Biol Chem 270:12184–12190

    PubMed  CAS  Google Scholar 

  110. Street VA, McKee-Johnson JW, Fonseca RC, Tempel BL, Noben-Trauth K (1998) Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nat Genet 19:390–394

    PubMed  CAS  Google Scholar 

  111. Strehler EE, Caride AJ, Filoteo AG, Xiong Y, Penniston JT, Enyedi A (2007) Plasma membrane Ca2+ ATPases as dynamic regulators of cellular calcium handling. Ann N Y Acad Sci 1099:226–236

    PubMed  CAS  Google Scholar 

  112. Strehler EE, Heim R, Carafoli E (1991) Molecular characterization of plasma membrane calcium pump isoforms. Adv Exp Med Biol 307:251–261

    PubMed  CAS  Google Scholar 

  113. Strehler EE, Treiman M (2004) Calcium pumps of plasma membrane and cell interior. Curr Mol Med 4:323–335

    PubMed  CAS  Google Scholar 

  114. Strehler EE, Zacharias DA (2001) Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev 81:21–50

    PubMed  CAS  Google Scholar 

  115. Szewczyk MM, Davis KA, Samson SE, Simpson F, Rangachari PK, Grover AK (2007) Ca2+-pumps and Na2+-Ca2+-exchangers in coronary artery endothelium versus smooth muscle. J Cell Mol Med 11:129–138

    PubMed  CAS  Google Scholar 

  116. Talarico Jr. EF, Kennedy BG, Marfurt CF, Loeffler KU, Mangini NJ (2005) Expression and immunolocalization of plasma membrane calcium ATPase isoforms in human corneal epithelium. Mol Vis 11:169–178

    PubMed  CAS  Google Scholar 

  117. Tanha J, Forsyth G, Schorr P, Crosby W, Lee JS (1997) Sequence and structure specific antibodies from phage display libraries. Mol Immunol 34:109–113

    PubMed  CAS  Google Scholar 

  118. Tiffert T, Lew VL (2001) Kinetics of inhibition of the plasma membrane calcium pump by vanadate in intact human red cells. Cell Calcium 30:337–342

    PubMed  CAS  Google Scholar 

  119. Vale-Gonzalez C, Alfonso A, Sunol C, Vieytes MR, Botana LM (2006) Role of the plasma membrane calcium adenosine triphosphatase on domoate-induced intracellular acidification in primary cultures of cerebelar granule cells. J Neurosci Res 84:326–337

    PubMed  CAS  Google Scholar 

  120. Vale-Gonzalez C, Gomez-Limia B, Vieytes MR, Botana LM (2007) Effects of the marine phycotoxin palytoxin on neuronal pH in primary cultures of cerebellar granule cells. J Neurosci Res 85:90–98

    PubMed  CAS  Google Scholar 

  121. Van Breemen C, Chen Q, Laher I (1995) Superficial buffer barrier function of smooth muscle sarcoplasmic reticulum. Trends Pharmacol Sci 16:98–105

    PubMed  Google Scholar 

  122. Van Breemen C, Saida K (1989) Cellular mechanisms regulating [Ca2+]i smooth muscle. Annu Rev Physiol 51:315–329

    Article  PubMed  Google Scholar 

  123. Varadi A, Molnar E, Ashcroft SJ (1996) A unique combination of plasma membrane Ca2+-ATPase isoforms is expressed in islets of Langerhans and pancreatic beta-cell lines. Biochem J 314:663–669

    PubMed  CAS  Google Scholar 

  124. Wanaverbecq N, Marsh SJ, Al Qatari M, Brown DA (2003) The plasma membrane calcium-ATPase as a major mechanism for intracellular calcium regulation in neurones from the rat superior cervical ganglion. J Physiol 550:83–101

    PubMed  CAS  Google Scholar 

  125. Wang KK, Villalobo A, Roufogalis BD (1992) The plasma membrane calcium pump: a multiregulated transporter. Trends Cell Biol 2:46–52

    PubMed  CAS  Google Scholar 

  126. Williams JC, Armesilla AL, Mohamed TM, Hagarty CL, McIntyre FH, Schomburg S, Zaki AO, Oceandy D, Cartwright EJ, Buch MH, Emerson M, Neyses L (2006) The sarcolemmal calcium pump, alpha-1 syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complex. J Biol Chem 281:23341–23348

    PubMed  CAS  Google Scholar 

  127. Wuytack F, Raeymaekers L, Missiaen L (2002) Molecular physiology of the SERCA and SPCA pumps. Cell Calcium 32:279–305

    PubMed  CAS  Google Scholar 

  128. Yanagida E, Shoji S, Hirayama Y, Yoshikawa F, Otsu K, Uematsu H, Hiraoka M, Furuichi T, Kawano S (2004) Functional expression of Ca2+ signaling pathways in mouse embryonic stem cells. Cell Calcium 36:135–146

    PubMed  CAS  Google Scholar 

  129. Zylinska L, Guerini D, Gromadzinska E, Lachowicz L (1998) Protein kinases A and C phosphorylate purified Ca2+-ATPase from rat cortex, cerebellum and hippocampus. Biochim Biophys Acta 1448:99–108

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid (NA5783) from the Heart & Stroke Foundation of Ontario. This work is dedicated to Dr. M. Kapoor (Calgary University, Calgary) who taught AKG how to do research and to Dr. E. E. Daniel (University of Alberta) who introduced him to PMCA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok K. Grover.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szewczyk, M.M., Pande, J. & Grover, A.K. Caloxins: a novel class of selective plasma membrane Ca2+ pump inhibitors obtained using biotechnology. Pflugers Arch - Eur J Physiol 456, 255–266 (2008). https://doi.org/10.1007/s00424-007-0348-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0348-6

Keywords

Navigation