Skip to main content

Advertisement

Log in

On the functional interaction between nicotinic acetylcholine receptor and Na+,K+-ATPase

  • Skeletal Muscle
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Previous studies have shown that nanomolar acetylcholine (ACh) produces a 2 to 4-mV hyperpolarization of skeletal muscle fibers putatively due to Na+,K+-ATPase activation. The present study elucidates the involvement of the nicotinic ACh receptor (nAChR) and of Na+,K+-ATPase isoform(s) in ACh-induced hyperpolarization of rat diaphragm muscle fibers. A variety of ligands of specific binding sites of nAChR and Na+,K+-ATPase were used. Dose–response curves for ouabain, a specific Na+,K+-ATPase inhibitor, were obtained to ascertain which Na+,K+-ATPase isoform(s) is involved. The ACh dose–response relationship for the hyperpolarization was also determined. The functional relationship between these two proteins was also studied in a less complex system, a membrane preparation from Torpedo electric organ. The possibility of a direct ACh effect on Na+,K+-ATPase was studied in purified lamb kidney Na+,K+-ATPase and in rat red blood cells, systems where no nAChR is present. The results indicate that binding of nAChR agonists to their specific sites results in modulation of ouabain-sensitive (most probably α2) isoform of Na+,K+-ATPase, leading to muscle membrane hyperpolarization. In the Torpedo preparation, ouabain modulates dansyl-C6-choline binding to nAChR, and vice versa. These results provide the first evidence of a functional interaction between nAChR and Na+,K+-ATPase. Possible interaction mechanisms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aizman O, Uhlen P, Lal M, Brismar H, Aperia A (2001) Ouabain, a steroid hormone that signals with slow calcium oscillations. Proc Natl Acad Sci USA 98:13420–13424

    Article  PubMed  CAS  Google Scholar 

  2. Benowitz NL, Zevin S, Jacob P (1997) Sources of variability in nicotine and cotinine levels with use of nicotine nasal spray, transdermal nicotine, and cigarette smoking. Br J Clin Pharmacol 43:259–267

    Article  PubMed  CAS  Google Scholar 

  3. Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275:F633–F655

    PubMed  CAS  Google Scholar 

  4. Blaustein MP (1993) Physiological effects of endogenous ouabain: control of intracellular Ca2+ stores and cell responsiveness. Am J Physiol 264:C1367–C1387

    PubMed  CAS  Google Scholar 

  5. Blaustein MP, Golovina VA (2001) Structural complexity and functional diversity of endoplasmic reticulum Ca2+ stores. Trends Neurosci 24:602–608

    Article  PubMed  CAS  Google Scholar 

  6. Bloch RJ, Morrow JS (1989) An unusual β-spectrin associated with clustered acetylcholine receptors. J Cell Biol 108:481–493

    Article  PubMed  CAS  Google Scholar 

  7. Carr C, Fischbach GD, Cohen JB (1989) A novel 87,000-Mr protein associated with acetylcholine receptors in Torpedo electric organ and vertebrate skeletal muscle. J Cell Biol 109:1753–1764

    Article  PubMed  CAS  Google Scholar 

  8. Clausen T (2003) Na+-K+ pump regulation and skeletal muscle contractility. Physiol Rev 83:1269–1324

    PubMed  CAS  Google Scholar 

  9. Cougnon MH, Moseley AE, Radzyukevich TL, Lingrel JB, Heiny JA (2002) Na,K-ATPase α- and β-isoform expression in developing skeletal muscles: α2 correlates with t-tubule formation. Eur J Physiol 445:123–131

    Article  CAS  Google Scholar 

  10. Dlouha H, Teisinger J, Vyskocil F (1979) Activation of membrane Na+/K+-ATPase of mouse skeletal muscle by acetylcholine and its inhibition by α-bungarotoxin, curare and atropine. Pflugers Arch 380:101–104

    Article  PubMed  CAS  Google Scholar 

  11. Dobretsov M, Hastings SL, Sims TJ, Stimers JR, Romanovsky D (2003) Stretch receptor-associated expression of α3 isoform of the Na+,K+-ATPase in rat peripheral nervous system. Neuroscience 116:1069–1080

    Article  PubMed  CAS  Google Scholar 

  12. Farr CD, Burd C, Tabet M, Wang X, Welsh WJ, Ball WJ (2001) Three-dimensional quantitative structure activity relationship study of the inhibition of Na+,K+-ATPase by cardiotonic steroids using comparative molecular field analysis. Biochemistry 41:1137–1148

    Article  CAS  Google Scholar 

  13. Fossier P, Baux G, Tauc L (1985) Acetylcholinesterase and synaptic efficacy. In: Alkon DL, Woody CD (eds) Neural mechanisms of conditioning. Plenum Press, New York, pp 341–354

    Google Scholar 

  14. Grutter T, Changeux J-P (2001) Nicotinic receptors in wonderland. Trends Biochem Sci 26:459–462

    Article  PubMed  CAS  Google Scholar 

  15. Henning RH, Nelemans SA, van den Akker J, den Hertog A (1994) Induction of Na+/K+-ATPase activity by long-term stimulation of nicotinic acetylcholine receptors in C2C12 myotubes. Br J Pharmacol 111:459–464

    PubMed  CAS  Google Scholar 

  16. Jurkat-Rott K, Lerche H, Lehmann-Horn F (2002) Skeletal muscle channelopathies. J Neurol 249:1493–1502

    Article  PubMed  CAS  Google Scholar 

  17. Kragenbrink R, Higham SC, Sansom SC, Pressley TA (1996) Chronic stimulation of acetylcholine receptors: differential effects on Na,K-ATPase isoforms in a myogenic cell line. Synapse 23:219–223

    Article  PubMed  CAS  Google Scholar 

  18. Lavoie L, Levenson R, Martin-Vasallo P, Klip A (1997) The molar ratios of α and β subunits of the Na+-K+-ATPase differ in distinct subcellular membranes from rat skeletal muscle. Biochemistry 36:7726–7732

    Article  PubMed  CAS  Google Scholar 

  19. Longo N, Scaglia F, Wang Y (2001) Insulin increases the turnover rate of Na+-K+-ATPase in human fibroblasts. Am J Physiol 280:C912–C919

    CAS  Google Scholar 

  20. Mohler PJ, Davis JQ, Bennett V (2005) Ankyrin-B coordinates the Na/K ATPase, Na/Ca exchanger, and InsP3 receptor in a cardiac T-tubule/SR microdomain. PLoS Biol 3(12):e423

    Article  PubMed  CAS  Google Scholar 

  21. Murphy KT, Snow RJ, Petersen AC, Murphy RM, Mollica J, Lee JS, Garnham AP, Aughey RJ, Leppik JA, Medved I, Cameron-Smith D, Mckenna MJ (2004) Intense exercise up-regulates Na+,K+-ATPase isoform mRNA, but not protein expression in human skeletal muscle. J Physiol 556:507–519

    Article  PubMed  CAS  Google Scholar 

  22. Nikolsky EE, Zemkova H, Voronin VA, Vyskocil F (1994) Role of non-quantal acetylcholine release in surplus polarization of mouse diaphragm fibres at the endplate zone. J Physiol 477:497–502

    PubMed  CAS  Google Scholar 

  23. Orlowski J, Lingrel JB (1988) Differential expression of the Na,K-ATPase α1 and α2 subunit genes in murine myogenic cell line. Induction of the α2 isozyme during myocyte differentiation. J Biol Chem 263:17817–17821

    PubMed  CAS  Google Scholar 

  24. Pedersen SE, Dryer EB, Cohen JB (1986) Location of ligand-binding sites on the nicotinic acetylcholine receptor α-subunit. J Biol Chem 261:13735–13743

    PubMed  CAS  Google Scholar 

  25. Radzyukevich TL, Moseley AE, Shelly DA, Redden GA, Behbehani MM, Lingrel JB, Paul RJ, Heiny JA (2004) The Na,K-ATPase α2 subunit isoform modulates contractility in the perinatal mouse diaphragm. Am J Physiol 287:C1300–C1310

    Article  CAS  Google Scholar 

  26. Raines DE, Krishnan NS (1998) Transient low-affinity agonist binding to Torpedo postsynaptic membranes resolved by using sequential mixing stopped-flow fluorescence spectroscopy. Biochemistry 37:956–964

    Article  PubMed  CAS  Google Scholar 

  27. Sanes JR, Lichtman JW (1999) Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 22:389–442

    Article  PubMed  CAS  Google Scholar 

  28. Schoner W (2002) Endogenous cardiac glycosides, a new class of steroid hormones. Eur J Biochem 269:2440–2448

    Article  PubMed  CAS  Google Scholar 

  29. Song XZ, Andreeva IE, Pedersen SE (2003) Site-selective agonist binding to the nicotinic acetylcholine receptor from Torpedo californica. Biochemistry 42:4197–4207

    Article  PubMed  CAS  Google Scholar 

  30. Song XZ, Pedersen SE (2000) Electrostatic interactions regulate desensitization of the nicotinic acetylcholine receptor. Biophys J 78:1324–1334

    Article  PubMed  CAS  Google Scholar 

  31. Stimers JR, Lobaugh LA, Liu S, Shigeto N, Lieberman M (1990) Intracellular sodium affects ouabain interaction with the Na/K pump in cultured chick cardiac myocytes. J Gen Physiol 95:77–95

    Article  PubMed  CAS  Google Scholar 

  32. Sweadner KJ (1995) Na,K-ATPase and its isoforms. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, New York, Oxford, pp 259–272

    Google Scholar 

  33. Thompson CB, McDonough AA (1996) Skeletal muscle Na,K-ATPase α and β subunit protein levels respond to hypokalemic challenge with isoform and muscle type specificity. J Biol Chem 271:32653–32658

    Article  PubMed  CAS  Google Scholar 

  34. Vyskocil F, Nikolsky E, Edwards C (1983) An analysis of the mechanisms underlying the nonquantal release of acetylcholine at the mouse neuromuscular junction. Neuroscience 9:429–435

    Article  PubMed  CAS  Google Scholar 

  35. Wang L, McComb JG, Weiss MH, McDonough AA, Zlokovic BV (1994) Nicotine downregulates α2 isoform of Na,K-ATPase at the blood-brain barrier and brain in rats. Biochem Biophys Res Commun 199:1422–1427

    Article  PubMed  CAS  Google Scholar 

  36. Williams MW, Resneck WG, Kaysser T, Ursitti JA, Birkenmeier CS, Barker JE, Bloch RJ (2001) Na,K-ATPase in skeletal muscle: two populations of β-spectrin control localization in the sarcolemma but not partitioning between the sarcolemma and the transverse tubules. J Cell Sci 114:751–762

    PubMed  CAS  Google Scholar 

  37. Xie Z, Askari A (2002) Na+/K+-ATPase as a signal transducer. Eur J Biochem 269:2434–2439

    Article  PubMed  CAS  Google Scholar 

  38. Zahler R, Sun W, Ardito T, Zhang Z, Kocsis JD, Kashgarian M (1996) The α3 isoform protein of the Na+,K+-ATPase is associated with the sites of cardiac and neuromuscular impulse transmission. Circ Res 78:870–879

    PubMed  CAS  Google Scholar 

  39. Zolovick AJ, Norman RL, Fedde MR (1970) Membrane constants of muscle fibers of rat diaphragm. Am J Physiol 219:654–657

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Russian Foundation for Basic Research (RFBR #04-04-49535); NIH MBRS#S06 GM50695; NIH RCMI#G12RR03035. We wish to thank Dr. Steen E Pedersen at the Baylor College of Medicine for his support with this project and for Torpedo californica tissue, dansyl-C6-choline, and use of the stopped-flow. We also appreciate Dr. Iraida Andreeva and Dr. Robert Meltzer at the Baylor College of Medicine, Dr. Maxim Dobretsov at the University of Arkansas for Medical Sciences, and Dr. Judy Heiny at the University of Cincinnati Medical Center for the discussions. In particular, we appreciated the support and advice of the late Dr. Julius Allen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor I. Krivoi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krivoi, I.I., Drabkina, T.M., Kravtsova, V.V. et al. On the functional interaction between nicotinic acetylcholine receptor and Na+,K+-ATPase. Pflugers Arch - Eur J Physiol 452, 756–765 (2006). https://doi.org/10.1007/s00424-006-0081-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0081-6

Keywords

Navigation