Skip to main content
Log in

ThermoTRP channels and cold sensing: what are they really up to?

  • Invited Review
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Cooling is sensed by peripheral thermoreceptors, the main transduction mechanism of which is probably a cold- and menthol-activated ion channel, transient receptor potential (melastatin)-8 (TRPM8). Stronger cooling also activates another TRP channel, TRP (ankyrin-like)-1, (TRPA1), which has been suggested to underlie cold nociception. This review examines the roles of these two channels and other mechanisms in thermal transduction. TRPM8 is activated directly by gentle cooling and depolarises sensory neurones; its threshold temperature (normally ~26–31°C in native neurones) is very flexible and it can adapt to long-term variations in baseline temperature to sensitively detect small temperature changes. This modulation is enabled by TRPM8’s low intrinsic thermal sensitivity: it is sensitised to varying degrees by its cellular context. TRPM8 is not the only thermosensitive element in cold receptors and interacts with other ionic currents to shape cold receptor activity. Cold can also cause pain: the transduction mechanism is uncertain, possibly involving TRPM8 in some neurones, but another candidate is TRPA1 which is activated in expression systems by strong cooling. However, native neurones that appear to express TRPA1 respond very slowly to cold, and TRPA1 alone cannot account readily for cold nociceptor activity or cold pain in humans. Other, as yet unknown, mechanisms of cold nociception are likely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a,b
Fig. 2a,b
Fig. 3a–c
Fig. 4a–d
Fig. 5a–c
Fig. 6a,b
Fig. 7a,b
Fig. 8a,b

Similar content being viewed by others

References

  1. Andersson DA, Chase HW, Bevan S (2004) TRPM8 activation by menthol, icilin, and cold is differentially modulated by intracellular pH. J Neurosci 24:5364–5369

    CAS  PubMed  Google Scholar 

  2. Askwith CC, Benson CJ, Welsh MJ, Snyder PM (2001) DEG/ENaC ion channels involved in sensory transduction are modulated by cold temperature. Proc Natl Acad Sci USA 98:6459–6463

    CAS  PubMed  Google Scholar 

  3. Babes A, Zorzon D, Reid G (2004) Two populations of cold-sensitive neurons in rat dorsal root ganglia and their modulation by nerve growth factor. Eur J Neurosci 20:2276–2282

    PubMed  Google Scholar 

  4. Babes A, Zorzon D, Reid G (2005) A novel type of cold-sensitive neurone in rat dorsal root ganglia (DRG) with rapid adaptation to cooling (abstract). J Physiol (Lond) (Proceedings) Bristol meeting July 2005

  5. Baccaglini PI, Hogan PG (1983) Some rat sensory neurons in culture express characteristics of differentiated pain sensory cells. Proc Natl Acad Sci USA 80:594–598

    CAS  PubMed  Google Scholar 

  6. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857

    Article  CAS  PubMed  Google Scholar 

  7. Behrendt HJ, Germann T, Gillen C, Hatt H, Jostock R (2004) Characterization of the mouse cold-menthol receptor TRPM8 and vanilloid receptor type-1 VR1 using a fluorometric imaging plate reader (FLIPR) assay. Br J Pharmacol 141:737–745

    CAS  PubMed  Google Scholar 

  8. Bessou P, Perl ER (1969) Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol 32:1025–1043

    CAS  PubMed  Google Scholar 

  9. Bonnington JK, McNaughton PA (2003) Signalling pathways involved in the sensitisation of mouse nociceptive neurones by nerve growth factor. J Physiol (Lond) 551:433–446

    Article  CAS  Google Scholar 

  10. Brauchi S, Orio P, Latorre R (2004) Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc Natl Acad Sci USA 101:15494–15499

    CAS  PubMed  Google Scholar 

  11. Braun HA, Bade H, Hensel H (1980) Static and dynamic discharge patterns of bursting cold fibers related to hypothetical receptor mechanisms. Arch 386:1–9

    Article  CAS  PubMed  Google Scholar 

  12. Braun HA, Wissing H, Schäfer K, Hirsch MC (1994) Oscillation and noise determine signal transduction in shark multimodal sensory cells. Nature 367:270–273

    CAS  PubMed  Google Scholar 

  13. Brock J, Pianova S, Belmonte C (2001) Differences between nerve terminal impulses of polymodal nociceptors and cold sensory receptors of the guinea-pig cornea. J Physiol (Lond) 533:493–501

    Article  CAS  Google Scholar 

  14. Burgess PR, Perl ER (1967) Myelinated afferent fibres responding specifically to noxious stimulation of the skin. J Physiol (Lond) 190:541–562

    CAS  Google Scholar 

  15. Campero M, Serra J, Bostock H, Ochoa JL (2001) Slowly conducting afferents activated by innocuous low temperature in human skin. J Physiol (Lond) 535:855–865

    Article  CAS  Google Scholar 

  16. Carr RW, Pianova S, Brock JA (2002) The effects of polarizing current on nerve terminal impulses recorded from polymodal and cold receptors in the guinea-pig cornea. J Gen Physiol 120:395–405

    CAS  PubMed  Google Scholar 

  17. Carr RW, Pianova S, Fernandez J, Fallon JB, Belmonte C, Brock JA (2003) Effects of heating and cooling on nerve terminal impulses recorded from cold-sensitive receptors in the guinea-pig cornea. J Gen Physiol 121:427–439

    PubMed  Google Scholar 

  18. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  PubMed  Google Scholar 

  19. Cesare P, McNaughton P (1996) A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc Natl Acad Sci USA 93:15435–15439

    CAS  PubMed  Google Scholar 

  20. Chuang HH, Neuhausser WM, Julius D (2004) The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel. Neuron 43:859–869

    CAS  PubMed  Google Scholar 

  21. Chuang HH, Prescott ED, Kong HY, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957–962

    Article  CAS  PubMed  Google Scholar 

  22. Craig AD (2002) Opinion: How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3:655–666

    CAS  PubMed  Google Scholar 

  23. Craig AD, Bushnell MC (1994) The thermal grill illusion: unmasking the burn of cold pain. Science 265:252–255

    CAS  PubMed  Google Scholar 

  24. Darian-Smith I (1984) Thermal sensibility. In: Darian-Smith I (ed) The nervous system (Handbook of physiology series, section 1). American Physiological Society, Bethesda, Maryland, pp 879–913

    Google Scholar 

  25. Darian-Smith I, Johnson KO, Dykes R (1973) “Cold” fiber population innervating palmar and digital skin of the monkey: responses to cooling pulses. J Neurophysiol 36:325–346

    Google Scholar 

  26. Davis KD (1998) Cold-induced pain and prickle in the glabrous and hairy skin. Pain 75:47–57

    CAS  PubMed  Google Scholar 

  27. Davis KD, Pope GE (2002) Noxious cold evokes multiple sensations with distinct time courses. Pain 98:179–185

    PubMed  Google Scholar 

  28. Djouhri L, Bleazard L, Lawson SN (1998) Association of somatic action potential shape with sensory receptive properties in guinea-pig dorsal root ganglion neurones. J Physiol (Lond) 513:857–872

    Article  CAS  Google Scholar 

  29. Dodt E, Zotterman Y (1952) The discharge of specific cold fibres at high temperatures (the paradoxical cold). Acta Physiol Scand 26:358–365

    CAS  PubMed  Google Scholar 

  30. Drummond HA, Abboud FM, Welsh MJ (2000) Localization of β and γ subunits of ENaC in sensory nerve endings in the rat foot pad. Brain Res 884:1–12

    CAS  PubMed  Google Scholar 

  31. Fowler CJ, Sitzoglou K, Ali Z, Halonen P (1988) The conduction velocities of peripheral nerve fibres conveying sensations of warming and cooling. J Neurol Neurosurg Psych 51:1164–1170

    CAS  Google Scholar 

  32. Fruhstorfer H (1984) Thermal sensibility changes during ischemic nerve block. Pain 20:355–361

    CAS  PubMed  Google Scholar 

  33. Georgopoulos AP (1976) Functional properties of primary afferent units probably related to pain mechanisms in primate glabrous skin. J Neurophysiol 39:71–83

    Google Scholar 

  34. Gingl E, Tichy H (2001) Infrared sensitivity of thermoreceptors. J Comp Physiol [A] 187:467–475

    CAS  Google Scholar 

  35. Hensel H (1981) Thermoreception and temperature regulation. Academic Press, London

    Google Scholar 

  36. Hensel H, Boman KKA (1960) Afferent impulses in cutaneous sensory nerves in human subjects. J Neurophysiol 23:564–578

    CAS  PubMed  Google Scholar 

  37. Hensel H, Iggo A (1971) Analysis of cutaneous warm and cold fibres in primates. Pflügers Arch 329:1–8

    Article  CAS  PubMed  Google Scholar 

  38. Hensel H, Schäfer K (1974) Effects of calcium on warm and cold receptors. Pflügers Arch 352:87–90

    Article  CAS  PubMed  Google Scholar 

  39. Hensel H, Zotterman Y (1951) The effect of menthol on the thermoreceptors. Acta Physiol Scand 24:27–34

    CAS  PubMed  Google Scholar 

  40. Hensel H, Zotterman Y (1951) The response of the cold receptors to constant cooling. Acta Physiol Scand 22:96–105

    CAS  PubMed  Google Scholar 

  41. Hille B (2001) Ionic channels of excitable cells, 3rd ed. Sinauer Associates, Sunderland, MA

    Google Scholar 

  42. Johnson KO, Darian-Smith I, LaMotte C (1973) Peripheral neural determinants of temperature discrimination in man: a correlative study of responses to cooling skin. J Neurophysiol 36:347–370

    Google Scholar 

  43. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    Article  CAS  PubMed  Google Scholar 

  44. Jordt SE, McKemy DD, Julius D (2003) Lessons from peppers and peppermint: the molecular logic of thermosensation. Curr Opin Neurobiol 13:487–492

    Article  CAS  PubMed  Google Scholar 

  45. Kenshalo DR, Duclaux R (1977) Response characteristics of cutaneous cold receptors in the monkey. J Neurophysiol 40:319–332

    CAS  PubMed  Google Scholar 

  46. Kenshalo DR, Scott HA Jr (1966) Temporal course of thermal adaptation. Science 151:1095–1096

    CAS  PubMed  Google Scholar 

  47. Kim HC, Chung MK (1999) Voltage-dependent sodium and calcium currents in acutely isolated adult rat trigeminal root ganglion neurons. J Neurophysiol 81:1123–1134

    Google Scholar 

  48. Klement W, Arndt JO (1992) The role of nociceptors of cutaneous veins in the mediation of cold pain in man. J Physiol (Lond) 449:73–83

    CAS  Google Scholar 

  49. Kress M, Koltzenburg M, Reeh PW, Handwerker HO (1992) Responsiveness and functional attributes of electrically localized terminals of cutaneous C-fibers in vivo and in vitro. J Neurophysiol 68:581–595

    Google Scholar 

  50. LaMotte RH, Thalhammer JG (1982) Response properties of high-threshold cutaneous cold receptors in the primate. Brain Res 244:279–287

    CAS  PubMed  Google Scholar 

  51. Levitan ES, Kramer RH (1990) Neuropeptide modulation of single calcium and potassium channels detected with a new patch clamp configuration. Nature 348:545–547

    CAS  PubMed  Google Scholar 

  52. Linte R, Babes A, Reid G (2005) The increase in cold sensitivity in rat dorsal root ganglion (DRG) neurones induced by nerve growth factor (NGF) is mediated by the high affinity NGF receptor (Abstract). J Physiol (Lond) (Proceedings) Bristol meeting July 2005

  53. Liu B, Qin F (2005) Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J Neurosci 25:1674–1681

    CAS  PubMed  Google Scholar 

  54. Long RR (1977) Sensitivity of cutaneous cold fibers to noxious heat: paradoxical cold discharge. J Neurophysiol 40:489–502

    Google Scholar 

  55. Mackenzie RA, Burke D, Skuse NF, Lethlean AK (1975) Fibre function and perception during cutaneous nerve block. J Neurol Neurosurg Psych 38:865–873

    CAS  Google Scholar 

  56. Maingret F, Lauritzen I, Patel AJ, Heurteaux C, Reyes R, Lesage F, Lazdunski M, Honoré E (2000) TREK-1 is a heat-activated background K+ channel. EMBO J 19:2483–2491

    CAS  PubMed  Google Scholar 

  57. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    CAS  PubMed  Google Scholar 

  58. Nealen ML, Gold MS, Thut PD, Caterina MJ (2003) TRPM8 mRNA is expressed in a subset of cold-responsive trigeminal neurons from rat. J Neurophysiol 90:515–520

    Google Scholar 

  59. Norrsell U, Finger S, Lajonchere C (1999) Cutaneous sensory spots and the “law of specific nerve energies”: history and development of ideas. Brain Res Bull 48:457–465

    CAS  PubMed  Google Scholar 

  60. Okazawa M, Inoue W, Hori A, Hosokawa H, Matsumura K, Kobayashi S (2004) Noxious heat receptors present in cold-sensory cells in rats. Neurosci Lett 359:33–36

    CAS  PubMed  Google Scholar 

  61. Okazawa M, Takao K, Hori A, Shiraki T, Matsumura K, Kobayashi S (2002) Ionic basis of cold receptors acting as thermostats. J Neurosci 22:3994–4001

    CAS  PubMed  Google Scholar 

  62. Okazawa M, Terauchi T, Shiraki T, Matsumura K, Kobayashi S (2000) l-menthol-induced [Ca2+]i increase and impulses in cultured sensory neurons. Neuroreport 11:2151–2155

    CAS  PubMed  Google Scholar 

  63. Patapoutian A, Peier AM, Story GM, Viswanath V (2003) ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat Rev Neurosci 4:529–539

    CAS  PubMed  Google Scholar 

  64. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    CAS  PubMed  Google Scholar 

  65. Perl ER (1996) Pain and the discovery of nociceptors. In: Belmonte C, Cervero F (eds) Neurobiology of nociceptors. Oxford University Press, Oxford, pp 5–36

    Google Scholar 

  66. Petruska JC, Napaporn J, Johnson RD, Gu JG, Cooper BY (2000) Subclassified acutely dissociated cells of rat DRG: histochemistry and patterns of capsaicin-, proton-, and ATP-activated currents. J Neurophysiol 84:2365–2379

    Google Scholar 

  67. Pierau F, Torrey P, Carpenter D (1974) Mammalian cold receptor afferents: role of an electrogenic sodium pump in sensory transduction. Brain Res 73:156–160

    CAS  PubMed  Google Scholar 

  68. Prescott ED, Julius D (2003) A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300:1284–1288

    Article  CAS  PubMed  Google Scholar 

  69. Reid G (2003) Doing physiology in Romania. Physiology News Summer 2003:30–32 (http://www.physoc.org/publications/pn/issuepdf/51/30.pdf)

    Google Scholar 

  70. Reid G (2004) Temperature adaptation of the cold and menthol receptor TRPM8 depends on a membrane-delimited mechanism (abstract). J Physiol (Lond) 557P:C102

    Google Scholar 

  71. Reid G, Amuzescu B, Zech E, Flonta M-L (2001) A system for applying rapid warming or cooling stimuli to cells during patch clamp recording or ion imaging. J Neurosci Methods 111:1–8

    CAS  PubMed  Google Scholar 

  72. Reid G, Babes A, Pluteanu F (2002) A cold- and menthol-activated current in rat dorsal root ganglion neurones: properties and role in cold transduction. J Physiol (Lond) 545:595–614

    Article  CAS  Google Scholar 

  73. Reid G, Flonta M-L (2001) Cold current in thermoreceptive neurons. Nature 413:480

    CAS  PubMed  Google Scholar 

  74. Reid G, Flonta M-L (2001) Cold transduction by inhibition of a background potassium conductance in rat primary sensory neurones. Neurosci Lett 297:171–174

    CAS  PubMed  Google Scholar 

  75. Reid G, Flonta M-L (2002) Ion channels activated by cold and menthol in cultured rat dorsal root ganglion neurones. Neurosci Lett 324:164–168

    CAS  PubMed  Google Scholar 

  76. Reid G, Zorzon D (2005) A rapid system for applying thermal stimuli during patch clamp and [Ca2+]i imaging experiments (abstract). J Physiol (Lond) (Proceedings) Bristol meeting July 2005

  77. Rosenzweig M, Brennan KM, Tayler TD, Phelps PO, Patapoutian A, Garrity PA (2005) The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Dev 19:419–424

    Article  CAS  PubMed  Google Scholar 

  78. Schäfer K, Braun H, Isenberg C (1986) Effect of menthol on cold receptor activity. Analysis of receptor processes. J Gen Physiol 88:757–776

    PubMed  Google Scholar 

  79. Scroggs RS, Fox AP (1992) Calcium current variation between acutely isolated adult rat dorsal root ganglion neurons of different size. J Physiol (Lond) 445:639–658

    CAS  Google Scholar 

  80. Serra J, Campero M, Ochoa J, Bostock H (1999) Activity-dependent slowing of conduction differentiates functional subtypes of C fibres innervating human skin. J Physiol (Lond) 515:799–811

    Article  CAS  Google Scholar 

  81. Simone DA, Kajander KC (1996) Excitation of rat cutaneous nociceptors by noxious cold. Neurosci Lett 213:53–56

    CAS  PubMed  Google Scholar 

  82. Simone DA, Kajander KC (1997) Responses of cutaneous A-fiber nociceptors to noxious cold. J Neurophysiol 77:2049–2060

    Google Scholar 

  83. Smith MP, Beacham D, Ensor E, Koltzenburg M (2004) Cold-sensitive, menthol-insensitive neurons in the murine sympathetic nervous system. Neuroreport 15:1399–1403

    PubMed  Google Scholar 

  84. Spray DC (1974) Characteristics, specificity, and efferent control of frog cutaneous cold receptors. J Physiol (Lond) 237:15–38

    CAS  Google Scholar 

  85. Spray DC (1974) Metabolic dependence of frog cold receptor sensitivity. Brain Res 72:354–359

    CAS  PubMed  Google Scholar 

  86. Spray DC (1986) Cutaneous temperature receptors. Annu Rev Physiol 48:625–638

    Article  CAS  PubMed  Google Scholar 

  87. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    Article  CAS  PubMed  Google Scholar 

  88. Suto K, Gotoh H (1999) Calcium signaling in cold cells studied in cultured dorsal root ganglion neurons. Neuroscience 92:1131–1135

    CAS  PubMed  Google Scholar 

  89. Thut PD, Wrigley D, Gold MS (2003) Cold transduction in rat trigeminal ganglia neurons in vitro. Neuroscience 119:1071–1083

    CAS  PubMed  Google Scholar 

  90. Todorovic SM, Lingle CJ (1998) Pharmacological properties of T-type Ca2+ current in adult rat sensory neurons: effects of anticonvulsant and anesthetic agents. J Neurophysiol 79:240–252

    Google Scholar 

  91. Tracey WD, Wilson RI, Laurent G, Benzer S (2003) painless, a Drosophila gene essential for nociception. Cell 113:261–273

    Article  CAS  PubMed  Google Scholar 

  92. Viana F, de la Peña E, Belmonte C (2002) Specificity of cold thermotransduction is determined by differential ionic channel expression. Nat Neurosci 5:254–260

    CAS  PubMed  Google Scholar 

  93. Viana F, de la Peña E, Mälkiä A, Cabedo H, Belmonte C (2004) TRPM8-dependent and -independent mechanisms in neuronal cold sensing (abstract). Program No. 599.7, 2004 Abstract Viewer/Itinerary Planner. Society for Neuroscience, Washington. http://sfn.scholarone.com/itin2004/index.html

  94. Viswanath V, Story GM, Peier AM, Petrus MJ, Lee VM, Hwang SW, Patapoutian A, Jegla T (2003) Opposite thermosensor in fruitfly and mouse. Nature 423:822–823

    Article  CAS  PubMed  Google Scholar 

  95. Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B (2004) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430:748–754

    CAS  PubMed  Google Scholar 

  96. Wang Z, van den Berg RJ, Ypey DL (1994) Resting membrane potentials and excitability at different regions of rat dorsal root ganglion neurons in culture. Neuroscience 60:245–254

    CAS  PubMed  Google Scholar 

  97. Yarnitsky D, Ochoa JL (1990) Release of cold-induced burning pain by block of cold-specific afferent input. Brain 113:893–902

    PubMed  Google Scholar 

  98. Zars T (2001) Two thermosensors in Drosophila have different behavioral functions. J Comp Physiol [A] 187:235–242

    Article  CAS  Google Scholar 

  99. Zotterman Y (1978) How it started: a personal review. In: Kenshalo DR (ed) Sensory functions of the skin in humans. Plenum Press, New York, pp 5–22

    Google Scholar 

Download references

Acknowledgements

Work in the author’s laboratory is supported by the Volkswagen Foundation, the Physiological Society and the Wellcome Trust. I am grateful to Alexandru Babes and Sally Lawson for comments on the manuscript, Felix Viana and Hans Braun for thought-provoking discussions, David Julius and David McKemy for rat TRPM8 used in the experiments shown in Fig. 4, and to Catriona Reid for help with preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon Reid.

Note added in the proof

Note added in the proof

A very recent study (Rohacs et al., Nature Neurosci 8:626-634, 2005) has considerably strengthened the evidence for involvement of PIP2 in Ca2+-dependent adaptation and modulation of TRPM8, making it likely that PIP2 has a dominant role in these processes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reid, G. ThermoTRP channels and cold sensing: what are they really up to?. Pflugers Arch - Eur J Physiol 451, 250–263 (2005). https://doi.org/10.1007/s00424-005-1437-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-1437-z

Keywords

Navigation