Skip to main content
Log in

The mechanosensitive nature of TRPV channels

  • Invited Review
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Transient receptor potential vanilloid (TRPV) channels are widely expressed in both sensory and nonsensory cells. Whereas the channels display a broad diversity to activation by chemical and physical stimuli, activation by mechanical stimuli is common to many members of this group in both lower and higher organisms. Genetic screening in Caenorhabditis elegans has demonstrated an essential role for two TRPV channels in sensory neurons. OSM-9 and OCR-2, for example, are essential for both osmosensory and mechanosensory (nose-touch) behaviors. Likewise, two Drosophila TRPV channels, NAN and IAV, have been shown to be critical for hearing by the mechanosensitive chordotonal organs located in the fly’s antennae. The mechanosensitive nature of the channels appears to be conserved in higher organisms for some TRPV channels. Two vertebrate channels, TRPV2 and TRPV4, are sensitive to hypotonic cell swelling, shear stress/fluid flow (TRPV4), and membrane stretch (TRPV2). In the osmosensing neurons of the hypothalamus (circumventricular organs), TRPV4 appears to function as an osmoreceptor, or part of an osmoreceptor complex, in control of vasopressin release, whereas in inner ear hair cells and vascular baroreceptors a mechanosensory role is suggestive, but not demonstrated. Finally, in many nonsensory cells expressing TRPV4, such as vascular endothelial cells and renal tubular epithelial cells, the channel exhibits well-developed local mechanosensory transduction processes where both cell swelling and shear stress/fluid flow lead to channel activation. Hence, many TRPV channels, or combinations of TRPV channels, display a mechanosensitive nature that underlies multiple mechanosensitive processes from worms to mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857

    Article  CAS  PubMed  Google Scholar 

  2. Basavappa S, Pedersen SF, Jorgensen NK, Ellory JC, Hoffmann EK (1998) Swelling-induced arachidonic acid release via the 85-kDa cPLA2 in human neuroblastoma cells. J Neurophysiol 79:1441–1449

    CAS  PubMed  Google Scholar 

  3. Benham CD, Gunthorpe MJ, Davis JB (2003) TRPV channels as temperature sensors. Cell Calcium 33:479–487

    Article  CAS  PubMed  Google Scholar 

  4. Blount P (2003) Molecular mechanisms of mechanosensation: big lessons from small cells. Neuron 37:731–734

    Article  CAS  PubMed  Google Scholar 

  5. Bourque CW, Oliet SH (1997) Osmoreceptors in the central nervous system. Annu Rev Physiol 59:601–619

    Article  CAS  PubMed  Google Scholar 

  6. Brown RC, O’Neil RG (2004) TRPC and TRPV channels in blood-brain barrier endothelial cells: Pathways for calcium entry after stress. Paper presented at the Society for Neuroscience 34th annual meeting, San Diego (program no. 198.14)

  7. Calvet JP, Grantham JJ (2001) The genetics and physiology of polycystic kidney disease. Semin Nephrol 21:107–123

    Article  CAS  PubMed  Google Scholar 

  8. Chen XZ, Segal Y, Basora N, Guo L, Peng JB, Babakhanlou H, Vassilev PM, Brown EM, Hediger MA, Zhou J (2001) Transport function of the naturally occurring pathogenic polycystin-2 mutant, R742X. Biochem Biophys Res Commun 282:1251–1256

    Article  CAS  PubMed  Google Scholar 

  9. Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524

    Article  CAS  PubMed  Google Scholar 

  10. Colbert HA, Smith TL, Bargmann CI (1997) OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J Neurosci 17:8259–8269

    CAS  PubMed  Google Scholar 

  11. Corey DP (2003) New TRP channels in hearing and mechanosensation. Neuron 39:585–588

    Article  CAS  PubMed  Google Scholar 

  12. Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano A, Cheung EL, Derfler BH, Duggan A, Geleoc GS, Gray PA, Hoffman MP, Rehm HL, Tamasauskas D, Zhang DS (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723–730

    Article  CAS  PubMed  Google Scholar 

  13. Delany NS, Hurle M, Facer P, Alnadaf T, Plumpton C, Kinghorn I, See CG, Costigan M, Anand P, Woolf CJ, Crowther D, Sanseau P, Tate SN (2001) Identification and characterization of a novel human vanilloid receptor-like protein, VRL-2. Physiol Genomics 4:165–174

    CAS  PubMed  Google Scholar 

  14. Delmas P, Padilla F, Osorio N, Coste B, Raoux M, Crest M (2004) Polycystins, calcium signaling, and human diseases. Biochem Biophys Res Commun 322:1374–1383

    Article  CAS  PubMed  Google Scholar 

  15. Drummond HA, Gebremedhin D, Harder DR (2004) Degenerin/epithelial Na+ channel proteins: components of a vascular mechanosensor. Hypertension 44:643–648

    Article  CAS  PubMed  Google Scholar 

  16. Drummond HA, Welsh MJ, Abboud FM (2001) ENaC subunits are molecular components of the arterial baroreceptor complex. Ann NY Acad Sci 940:42–47

    CAS  PubMed  Google Scholar 

  17. Earley S, Waldron BJ, Brayden JE (2004) Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ Res 95:922–929

    Article  CAS  PubMed  Google Scholar 

  18. Eberl DF, Hardy RW, Kernan MJ (2000) Genetically similar transduction mechanisms for touch and hearing in Drosophila. J Neurosci 20:5981–5988

    CAS  PubMed  Google Scholar 

  19. Gao X, Wu L, O’Neil RG (2003) Temperature-modulated diversity of TRPV4 channel gating: activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. J Biol Chem 278:27129–27137

    Article  CAS  PubMed  Google Scholar 

  20. Gillespie PG, Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413:194–202

    Article  CAS  PubMed  Google Scholar 

  21. Gong Z, Son W, Chung YD, Kim J, Shin DW, McClung CA, Lee Y, Lee HW, Chang DJ, Kaang BK, Cho H, Oh U, Hirsh J, Kernan MJ, Kim C (2004) Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila. J Neurosci 24:9059–9066

    Article  CAS  PubMed  Google Scholar 

  22. Goodman MB, Schwarz EM (2003) Transducing touch in Caenorhabditis elegans. Annu Rev Physiol 65:429–452

    Article  CAS  PubMed  Google Scholar 

  23. Grunert U, Gnatzy W (1987) K+ and Ca++ in the receptor lymph of arthropod cuticular mechanoreceptors. J Comp Physiol [A] 161:329–333

    Article  CAS  Google Scholar 

  24. Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22:6408–6414

    CAS  PubMed  Google Scholar 

  25. Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L, Sukhatme VP, Guggino WB, Germino GG (2000) Co-assembly of polycystin-1 and −2 produces unique cation-permeable currents. Nature 408:990–994

    Article  CAS  PubMed  Google Scholar 

  26. Hardie RC (2003) Regulation of TRP channels via lipid second messengers. Annu Rev Physiol 65:735–759

    Article  CAS  PubMed  Google Scholar 

  27. Helmlinger G, Berk BC, Nerem RM (1996) Pulsatile and steady flow-induced calcium oscillations in single cultured endothelial cells. J Vasc Res 33:360–369

    CAS  PubMed  Google Scholar 

  28. Hoenderop JG, Nilius B, Bindels RJ (2005) Calcium absorption across epithelia. Physiol Rev 85:373–422

    Article  CAS  PubMed  Google Scholar 

  29. Howard J, Bechstedt S (2004) Hypothesis: a helix of ankyrin repeats of the NOMPC-TRP ion channel is the gating spring of mechanoreceptors. Curr Biol 14:R224–R226

    Article  CAS  PubMed  Google Scholar 

  30. Hudspeth AJ (1989) How the ear’s works work. Nature 341:397–404

    Article  CAS  PubMed  Google Scholar 

  31. Hudspeth AJ (2001) How the ear’s works work: mechanoelectrical transduction and amplification by hair cells of the internal ear. Harvey Lect 97:41–54

    CAS  PubMed  Google Scholar 

  32. Igarashi P, Somlo S (2002) Genetics and pathogenesis of polycystic kidney disease. J Am Soc Nephrol 13:2384–2398

    Article  CAS  PubMed  Google Scholar 

  33. Jaquemar D, Schenker T, Trueb B (1999) An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J Biol Chem 274:7325–7333

    Article  CAS  PubMed  Google Scholar 

  34. Jia Y, Wang X, Varty L, Rizzo CA, Yang R, Correll CC, Phelps PT, Egan RW, Hey JA (2004) Functional TRPV4 channels are expressed in human airway smooth muscle cells. Am J Physiol 287:L272–L278

    CAS  Google Scholar 

  35. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    Article  CAS  PubMed  Google Scholar 

  36. Kaplan JM, Horvitz HR (1993) A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proc Natl Acad Sci USA 90:2227–2231

    CAS  PubMed  Google Scholar 

  37. Kernan M, Cowan D, Zuker C (1994) Genetic dissection of mechanosensory transduction: mechanoreception-defective mutations of Drosophila. Neuron 12:1195–1206

    Article  CAS  PubMed  Google Scholar 

  38. Kim J, Chung YD, Park DY, Choi S, Shin DW, Soh H, Lee HW, Son W, Yim J, Park CS, Kernan MJ, Kim C (2003) A TRPV family ion channel required for hearing in Drosophila. Nature 424:81–84

    Article  CAS  PubMed  Google Scholar 

  39. Kraske S, Cunningham JT, Hajduczok G, Chapleau MW, Abboud FM, Wachtel RE (1998) Mechanosensitive ion channels in putative aortic baroreceptor neurons. Am J Physiol 275:H1497–H1501

    CAS  PubMed  Google Scholar 

  40. Kumada M, Terui N, Kuwaki T (1990) Arterial baroreceptor reflex: its central and peripheral neural mechanisms. Prog Neurobiol 35:331–361

    Article  CAS  PubMed  Google Scholar 

  41. Kwan HY, Leung PC, Huang Y, Yao X (2003) Depletion of intracellular Ca2+ stores sensitizes the flow-induced Ca2+ influx in rat endothelial cells. Circ Res 92:286–292

    Article  CAS  PubMed  Google Scholar 

  42. Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103:525–535

    Article  CAS  PubMed  Google Scholar 

  43. Liedtke W, Friedman JM (2003) Abnormal osmotic regulation in trpv4−/− mice. Proc Natl Acad Sci USA 100:13698–13703

    Article  CAS  PubMed  Google Scholar 

  44. Liedtke W, Tobin DM, Bargmann CI, Friedman JM (2003) Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proc Natl Acad Sci USA 100[Suppl 2]:14531–14536

    Article  CAS  PubMed  Google Scholar 

  45. Liu W, Xu S, Woda C, Kim P, Weinbaum S, Satlin LM (2003) Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol 285:F998–F1012

    CAS  Google Scholar 

  46. McCarty NA, O’Neil RG (1992) Calcium signaling in cell volume regulation. Physiol Rev 72:1037–1061

    Google Scholar 

  47. Mizuno A, Matsumoto N, Imai M, Suzuki M (2003) Impaired osmotic sensation in mice lacking TRPV4. Am J Physiol 285:C96–C101

    CAS  Google Scholar 

  48. Montell C (2005) The TRP superfamily of cation channels. Sci STKE 2005:re3

    PubMed  Google Scholar 

  49. Montell C (2003) The venerable inveterate invertebrate TRP channels. Cell Calcium 33:409–417

    Article  CAS  PubMed  Google Scholar 

  50. Moran MM, Xu H, Clapham DE (2004) TRP ion channels in the nervous system. Curr Opin Neurobiol 14:362–369

    Article  CAS  PubMed  Google Scholar 

  51. Muraki K, Iwata Y, Katanosaka Y, Ito T, Ohya S, Shigekawa M, Imaizumi Y (2003) TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 93:829–838

    Article  CAS  PubMed  Google Scholar 

  52. Mutai H, Heller S (2003) Vertebrate and invertebrate TRPV-like mechanoreceptors. Cell Calcium 33:471–478

    Article  CAS  PubMed  Google Scholar 

  53. Nakamura T (2000) Cellular and molecular constituents of olfactory sensation in vertebrates. Comp Biochem Physiol A Mol Integr Physiol 126:17–32

    Article  CAS  PubMed  Google Scholar 

  54. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    Article  CAS  PubMed  Google Scholar 

  55. Nauli SM, Zhou J (2004) Polycystins and mechanosensation in renal and nodal cilia. Bioessays 26:844–856

    Article  CAS  PubMed  Google Scholar 

  56. Nilius B, Droogmans G, Wondergem R (2003) Transient receptor potential channels in endothelium: solving the calcium entry puzzle? Endothelium 10:5–15

    Article  CAS  PubMed  Google Scholar 

  57. Nilius B, Prenen J, Wissenbach U, Bodding M, Droogmans G (2001) Differential activation of the volume-sensitive cation channel TRP12 (OTRPC4) and volume-regulated anion currents in HEK-293 cells. Pflugers Arch 443:227–233

    Article  CAS  PubMed  Google Scholar 

  58. Nilius B, Voets T (2004) Diversity of TRP channel activation. Novartis Found Symp 258:140–149; discussion 149–159, 263–266

    CAS  PubMed  Google Scholar 

  59. Nilius B, Vriens J, Prenen J, Droogmans G, Voets T (2004) TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol 286:C195–C205

    Article  CAS  Google Scholar 

  60. Okada Y, Maeno E, Shimizu T, Dezaki K, Wang J, Morishima S (2001) Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J Physiol 532:3–16

    Article  CAS  PubMed  Google Scholar 

  61. O’Neil RG, Brown RC (2003) The vanilloid receptor family of calcium-permeable channels: molecular integrators of microenvironmental stimuli. News Physiol Sci 18:226–231

    CAS  PubMed  Google Scholar 

  62. O’Neil RG, Gao X, Wu L (2005) Mechanosensitive nature of the TRPV4 channel in renal epithelia revealed by siRNA gene silencing. FASEB J 19:A1163

    Google Scholar 

  63. Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB (2002) Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr Biol 12:R378–R380

    Article  CAS  PubMed  Google Scholar 

  64. Peng JB, Brown EM, Hediger MA (2003) Epithelial Ca2+ entry channels: transcellular Ca2+ transport and beyond. J Physiol 551:729–740

    CAS  PubMed  Google Scholar 

  65. Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79

    Article  CAS  PubMed  Google Scholar 

  66. Rosenzweig M, Brennan KM, Tayler TD, Phelps PO, Patapoutian A, Garrity PA (2005) The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Dev 19:419–424

    Article  CAS  PubMed  Google Scholar 

  67. Sidi S, Friedrich RW, Nicolson T (2003) NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301:96–99

    Article  CAS  PubMed  Google Scholar 

  68. Snitsarev V, Whiteis CA, Abboud FM, Chapleau MW (2002) Mechanosensory transduction of vagal and baroreceptor afferents revealed by study of isolated nodose neurons in culture. Auton Neurosci 98:59–63

    Article  PubMed  Google Scholar 

  69. Sokolchik I, Tanabe T, Baldi PF, Sze JY (2005) Polymodal sensory function of the Caenorhabditis elegans OCR-2 channel arises from distinct intrinsic determinants within the protein and is selectively conserved in mammalian TRPV proteins. J Neurosci 25:1015–1023

    Article  CAS  PubMed  Google Scholar 

  70. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    Article  CAS  PubMed  Google Scholar 

  71. Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702

    Article  CAS  PubMed  Google Scholar 

  72. Sukharev S, Corey DP (2004) Mechanosensitive channels: multiplicity of families and gating paradigms. Sci STKE 2004:re4

    PubMed  Google Scholar 

  73. Sullivan MJ, Sharma RV, Wachtel RE, Chapleau MW, Waite LJ, Bhalla RC, Abboud FM (1997) Non-voltage-gated Ca2+ influx through mechanosensitive ion channels in aortic baroreceptor neurons. Circ Res 80:861–867

    CAS  PubMed  Google Scholar 

  74. Syntichaki P, Tavernarakis N (2004) Genetic models of mechanotransduction: the nematode Caenorhabditis elegans. Physiol Rev 84:1097–153

    Google Scholar 

  75. Tavernarakis N, Driscoll M (2001) Mechanotransduction in Caenorhabditis elegans: the role of DEG/ENaC ion channels. Cell Biochem Biophys 35:1–18

    Article  CAS  PubMed  Google Scholar 

  76. Thoroed SM, Lauritzen L, Lambert IH, Hansen HS, Hoffmann EK (1997) Cell swelling activates phospholipase A2 in Ehrlich ascites tumor cells. J Membr Biol 160:47–58

    Article  CAS  PubMed  Google Scholar 

  77. Thurm U (1965) An insect mechanoreceptor. I. Fine structure and adequate stimulus. Cold Spring Harb Symp Quant Biol 30:75–82

    CAS  PubMed  Google Scholar 

  78. Thurm U (1965) An insect mechanoreceptor. II. Receptor potentials. Cold Spring Harb Symp Quant Biol 30:83–94

    CAS  PubMed  Google Scholar 

  79. Tian W, Salanova M, Xu H, Lindsley JN, Oyama TT, Anderson S, Bachmann S, Cohen DM (2004) Renal expression of osmotically responsive cation channel TRPV4 is restricted to water-impermeant nephron segments. Am J Physiol 287:F17–F24

    Google Scholar 

  80. Tinel H, Kinne-Saffran E, Kinne RK (2000) Calcium signalling during RVD of kidney cells. Cell Physiol Biochem 10:297–302

    Article  CAS  PubMed  Google Scholar 

  81. Tobin D, Madsen D, Kahn-Kirby A, Peckol E, Moulder G, Barstead R, Maricq A, Bargmann C (2002) Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 35:307–318

    Article  CAS  PubMed  Google Scholar 

  82. Tominaga M, Caterina MJ (2004) Thermosensation and pain. J Neurobiol 61:3–12

    Article  PubMed  Google Scholar 

  83. Tracey WD Jr, Wilson RI, Laurent G, Benzer S (2003) Painless, a Drosophila gene essential for nociception. Cell 113:261–273

    Article  CAS  PubMed  Google Scholar 

  84. Trudeau MC, Zagotta WN (2003) Calcium/calmodulin modulation of olfactory and rod cyclic nucleotide-gated ion channels. J Biol Chem 278:18705–18708

    Article  CAS  PubMed  Google Scholar 

  85. Viswanath V, Story GM, Peier AM, Petrus MJ, Lee VM, Hwang SW, Patapoutian A, Jegla T (2003) Opposite thermosensor in fruit fly and mouse. Nature 423:822–823

    Article  CAS  PubMed  Google Scholar 

  86. Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci USA 101:396–401

    Article  CAS  PubMed  Google Scholar 

  87. Walker RG, Willingham AT, Zuker CS (2000) A Drosophila mechanosensory transduction channel. Science 287:2229–2234

    Article  CAS  PubMed  Google Scholar 

  88. Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424:434–438

    Article  CAS  PubMed  Google Scholar 

  89. Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B (2002) Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277:47044–47051

    Article  CAS  PubMed  Google Scholar 

  90. Wissenbach U, Bodding M, Freichel M, Flockerzi V (2000) Trp12, a novel Trp related protein from kidney. FEBS Lett 485:127–134

    Article  CAS  PubMed  Google Scholar 

  91. Woda CB, Leite M Jr, Rohatgi R, Satlin LM (2002) Effects of luminal flow and nucleotides on [Ca2+]i in rabbit cortical collecting duct. Am J Physiol 283:F437–46

    CAS  Google Scholar 

  92. Xu GM, Gonzalez-Perrett S, Essafi M, Timpanaro GA, Montalbetti N, Arnaout MA, Cantiello HF (2003) Polycystin-1 activates and stabilizes the polycystin-2 channel. J Biol Chem 278:1457–1462

    Article  CAS  PubMed  Google Scholar 

  93. Yao X, Kwan HY, Chan FL, Chan NW, Huang Y (2000) A protein kinase G-sensitive channel mediates flow-induced Ca2+ entry into vascular endothelial cells. FASEB J 14:932–938

    CAS  PubMed  Google Scholar 

  94. Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13:2508–2516

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger G. O‘Neil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O‘Neil, R.G., Heller, S. The mechanosensitive nature of TRPV channels. Pflugers Arch - Eur J Physiol 451, 193–203 (2005). https://doi.org/10.1007/s00424-005-1424-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-1424-4

Keywords

Navigation