Skip to main content
Log in

Integrin stimulation induces calcium signalling in rat cardiomyocytes by a NO-dependent mechanism

  • Signal Transduction
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The myocardial stretch-induced increase in intracellular [Ca2+] ([Ca2+]i) is considered to be caused by integrin stimulation. Myocardial stretch is also associated with increased nitric oxide (NO) formation. We hypothesised that NO is implicated in calcium signalling following integrin stimulation. Integrins of neonatal rat cardiomyocytes were stimulated with a pentapeptide containing the Arg-Gly-Asp (RGD) sequence. [Ca2+]i was measured with Fura2, [NO]i was measured with DAF2 and phosphorylation of focal adhesion kinase (FAK) was monitored with immunofluorescence techniques. Integrin stimulation increased both [NO]i and [Ca2+]i, the latter response being inhibited by ryanodine receptor-2 (RyR2) blockers and by NG-monomethyl-L-arginine (L-NMMA), an inhibitor of NOS, but resistant to GdCl3, diltiazem and wortmannin. Integrin-induced intracellular Ca2+ release thus appears to be independent of the influx of extracellular Ca2+ and phosphatidylinositol-3 kinase activity. In addition, integrin stimulation induced phosphorylation of FAK. Our results provide evidence for an integrin-induced Ca2+ release from RyR2 which is mediated by NO formation, probably via FAK-induced NOS activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a,b
Fig. 2a,b
Fig. 3a,b
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DAF2-DA:

4,5-diaminofluorescein diacetate

FAK:

Focal adhesion kinase

L-NMMA:

NG-monomethyl-L-arginine

NO:

Nitric oxide

NOS:

Nitric oxide synthase

PI3K:

Phosphatidylinositol-3 kinase

P+RR:

Procaine plus ruthenium red

RGD:

Arg-Gly-Asp sequence

RGE:

Asp-Gly-Arg sequence

RyR:

Ryanodine receptor

SNAP:

S-nitroso-N-acetylpenicillamine

SNP:

Sodium-nitroprusside

SR:

Sarcoplasmic reticulum

References

  1. Abi-Gerges N, Szabo G, Otero AS, Fischmeister R, Méry PF (2002) NO donors potentiate the β-adrenergic stimulation of ICa,Land the muscarinic activation of IK,Ach in rat cardiac myocytes. J Physiol (Lond) 540:411–424

    Article  Google Scholar 

  2. Alvarez BV, Pérez NG, Ennis IL, Camilión de Hurtado MC, Cingolani HE (1999) Mechanisms underlying the increase in force and Ca2+ transient that follow stretch of cardiac muscle: a possible explanation of the Anrep effect. Circ Res 85:716–722

    PubMed  Google Scholar 

  3. Atsma DE, Bastiaanse EML, Jerzewski A, van der Valk LJM, van der Laarse A (1995) Role of calcium activated neutral protease (calpain) in cell death in cultured neonatal rat cardiomyocytes during metabolic inhibition. Circ Res 76:1071–1078

    PubMed  Google Scholar 

  4. Campbell DL, Stamler JS, Strauss HC (1996) Redox modulation of L-type calcium channels in ferret cardiomyocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol 108:277–293

    Article  PubMed  Google Scholar 

  5. Chan WL, Holstein-Rathlou NH, Yip KP (2001) Integrin mobilizes intracellular Ca2+ in renal vascular smooth muscle cells. Am J Physiol 280:C593–C603

    Google Scholar 

  6. Chicurel ME, Chen CS, Ingber DE (1998) Cellular control lies in the balance of forces. Curr Opin Cell Biol 10:232–239

    Article  PubMed  Google Scholar 

  7. Gannier F, White E, Lacampagne A, Garnier D, Le Guennec J (1994) Streptomycin reverses a large stretch-induced increase in [Ca2+]i in isolated guinea pig ventricular myocytes. Cardiovasc Res 128:1193–1198

    Google Scholar 

  8. Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–1032

    Article  PubMed  Google Scholar 

  9. Hu H, Chiamvimonvat N, Yamagishi T, Marban E (1997) Direct inhibition of expressed L-type Ca2+ channels by S-nitrosothiol nitric oxide donors. Circ Res 81:742–752

    PubMed  Google Scholar 

  10. Ince C, Ypey DL, Diesselhoff-den Dulk MMC, Visser JAM, de Vos A, van Furth R (1983) Micro-CO2-incubator for use on a microscope. J Immunol Meth 60:269–275

    Article  Google Scholar 

  11. Ince C, van Dissel J, Diesselhoff MMC (1985) A Teflon dish for high magnification microscopy and measurements in single cells. Pflugers Arch 403:240–244

    Article  PubMed  Google Scholar 

  12. Ingber DE (2002) Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 91:877–887

    Article  PubMed  Google Scholar 

  13. Khan SA, Skaf MW, Harrison RW, Lee K, Minhas KM, Kumar A, Fradley M, Shoukas AA, Berkowitz DE, Hare JM (2003) Nitric oxide regulation of myocardial contractility and calcium cycling. Independent impact of neuronal and endothelial nitric oxide synthases. Circ Res 92:1322–1329

    Article  PubMed  Google Scholar 

  14. Laser M, Willey CD, Jiang W, Cooper IV g, Menick DR, Zile MR, Kuppuswamy D (2000) Integrin activation and focal complex formation in cardiac hypertrophy. J Biol Chem 275:35624–35630

    Article  PubMed  Google Scholar 

  15. Liang F, Atakilit A, Gardner DG (2000) Integrin dependence of brain natriuretic peptide gene promoter activation by mechanical strain. J Biol Chem 275:20355–20360

    Article  PubMed  Google Scholar 

  16. Martinez-Ruiz A, Lamas S (2004) S-nitrosylation: a potential new paradigm in signal transduction. Cardiovasc Res 62:43–52

    Article  PubMed  Google Scholar 

  17. Méry PF, Pavoine C, Belhassen L, Pecker F, Fischmeister R (1993) Nitric oxide regulates cardiac Ca2+ current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation. J Biol Chem 268:26286–26295

    PubMed  Google Scholar 

  18. Nag AC, Cheng M (1986) Biochemical evidence for cellular dedifferentiation in adult rat cardiac muscle cells in culture: expression of myosin isoenzymes. Biochem Biophys Res Commun 137:855–862

    Article  PubMed  Google Scholar 

  19. Nakatsubo N, Kojima H, Kikuchi K, Nagoshi H, Hirata Y, Maeda D, Imai Y, Irimura T, Nagano T (1998) Direct evidence of nitric oxide production from bovine aortic endothelial cells using new fluorescence indicators: diaminofluoresceins. FEBS Lett 427:263–266

    Article  PubMed  Google Scholar 

  20. Pinsky DJ, Patton S, Mesaro S, Brovkovych V, Kubaszewski E, Grunfeld S, Malinski T (1997) Mechanical transduction of nitric oxide synthesis in the beating heart. Circ Res 81:372–379

    PubMed  Google Scholar 

  21. Prendergast BD, Sagach VF, Shah AM (1997) Basal release of nitric oxide augments the Frank-Starling response in the isolated heart. Circulation 96:1320–1329

    PubMed  Google Scholar 

  22. Ruoslahti E, Pierschbacher MD (1986) Arg-Gly-Asp: a versatile cell recognition signal. Cell 44:517–518

    Article  PubMed  Google Scholar 

  23. Ruwhof C, van Wamel JET, Noordzij LAW, Aydin S, Harper JCR, van der Laarse A (2001) Mechanical stress stimulates phospholipase C activity and intracellular calcium ion levels in myocardial cells derived from neonatal rat ventricles. Cell Calcium 29:73–83

    Article  PubMed  Google Scholar 

  24. Sadoshima JI, Xu Y, Slayter HS, Izumo S (1993) Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75:977–984

    Article  PubMed  Google Scholar 

  25. Shyy JYJ, Chien S (1997) Role of integrins in cellular responses to mechanical stress and adhesion. Curr Opin Cell Biol 9:707–713

    Article  PubMed  Google Scholar 

  26. Sjaastad MD, Lewis RS, Nelson WJ (1996) Mechanisms of integrin-mediated calcium signaling in MDCK cells: regulation of adhesion by IP3- and stress-independent calcium influx. Mol Biol Cell 7:1025–1041

    PubMed  Google Scholar 

  27. Somogyi L, Lasic Z, Vukicevic S, Banfic H (1994) Collagen type IV stimulates an increase in intracellular Ca2+ in pancreatic acinar cells via activation of phospholipase C. Biochem J 299:603–611

    PubMed  Google Scholar 

  28. Stamler JS, Lamas S, Fang FC (2001) Nitrosylation: the prototypic redox-based signaling mechanism. Cell 106:675–683

    Article  PubMed  Google Scholar 

  29. Stoyanovsky D, Murphy T, Anno PR, Kim YM, Salama G (1997) Nitric oxide activates skeletal and cardiac ryanodine receptors. Cell Calcium 21:19–29

    Article  PubMed  Google Scholar 

  30. Sun J, Xin C, Eu JP, Stamler JS, Meissner G (2001) Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc Natl Acad Sci USA 98:11158–11162

    Article  PubMed  Google Scholar 

  31. Tatsukawa Y, Kiyosue T, Arita M (1997) Mechanical stretch increases intracellular calcium concentration in cultured ventricular cells from neonatal rats. Heart Vessels 12:128–135

    Google Scholar 

  32. van der Wees CGC, Vreeswijk MPG, Persoon M, van der Laarse A, van Zeeland AA, Mullenders LHF (2003) Deficient global genome repair of UV-induced cyclobutane pyrimidine dimers in terminally differentiated myocytes and proliferating fibroblasts from the rat heart. DNA Repair 2:1297–1308

    Article  PubMed  Google Scholar 

  33. Vila Petroff MG, Kim SH, Pepe S, Dessy C, Marban E, Balligand JL, Sollott SJ (2001) Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat Cell Biol 3:867–873

    Article  PubMed  Google Scholar 

  34. Waitkus-Edwards KR, Martinez-Lemus LA, Wu X, Trzeciakowski JP, Davis MJ, Davis GE, Meininger GA (2002) α4β1 Integrin activation of L-type calcium channels in vascular smooth muscle causes arteriole vasoconstriction. Circ Res 90:473–480

    Article  PubMed  Google Scholar 

  35. Wu X, Mogford JE, Platts SH, Davis GE, Meininger GA, Davis MJ (1998) Modulation of calcium current in arteriolar smooth muscle by α v β3 and α5β1 integrin ligands. J Cell Biol 143:241–252

    Article  PubMed  Google Scholar 

  36. Xu L, Eu JP, Meissner G, Stamler JS (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279:234–237

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Dutch Heart Foundation #97.176. We thank Salma Gurmany for assistance with NO imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. van der Laarse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Wees, C.G.C., Bax, W.H., van der Valk, E.J.M. et al. Integrin stimulation induces calcium signalling in rat cardiomyocytes by a NO-dependent mechanism. Pflugers Arch - Eur J Physiol 451, 588–595 (2006). https://doi.org/10.1007/s00424-005-1402-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-1402-x

Keywords

Navigation