Skip to main content
Log in

Dopamine is metabolised by different enzymes along the rat nephron

  • Renal Function, Body Fluids
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine the basal levels of dopamine (DA) and to examine the enzymes involved in DA metabolism in different microdissected nephron segments from rat kidneys. Segments were incubated with DA (50 nM) or DA plus monoamine oxidase (MAO) or catechol-O-methyl transferase (COMT) inhibitors. Basal DA levels were higher in the proximal convoluted tubule (PCT, 10.8±3.7 pg/mm) and in the medullary collecting duct (MCD, 10.9±4.0 pg/mm) than in the medullary thick ascending limb of Henle’s loop (MTAL, 4.9±0.9 pg/mm) (P<0.05). The percentage of exogenously added DA that was not metabolised was similar in both PCT (67±13%) and MCD (65±5%) and lower in MTAL (35±7%), suggesting that MTAL is a major site of DA metabolism. Inhibition of MAO (pargyline 1 mM) significantly increased the basal content of DA and the percentage of the added non-metabolised DA (to 95±10%) in PCT but had no effect on MTAL or MCD. Conversely, inhibition of COMT (nitecapone or Ro-41-0960, both 1 mM) slightly increased the basal levels of DA only in MTAL, whereas the percentage of added DA not metabolised rose to 97±10% in MTAL and to 91±15% in MCD. COMT inhibition had no effect in PCT. In conscious rats pargyline (50 mg/kg) increased urinary DA from 680±34 to 1,128±158 ng/d/100 g BW (P<0.01) while nitecapone (40 mg/kg) produced a slight non-significant increment. Our results show that DA is present all along the rat nephron and that renal DA is metabolised continuously and predominantly by MAO in proximal segments, and by COMT in the more distal ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aperia AC (2000) Intrarenal dopamine: a key signal in the interactive regulation of sodium metabolism. Annu Rev Physiol 62:621–647

    CAS  PubMed  Google Scholar 

  2. Armando I, Nowicki S, Aguirre J, Barontini M (1995) A decreased uptake of dopa results in defective renal dopamine production in aged rats. Am J Physiol 268:F1087–F1092

    CAS  PubMed  Google Scholar 

  3. Bertuccio CA, Cheng SX, Arrizurieta EE, Martín RS, Ibarra FR (2003) Mechanisms of Na+-K+-ATPase phosphorylation by PKC in the medullary thick ascending limb of Henle in the rat. Pflugers Arch 447:87–96

    CAS  PubMed  Google Scholar 

  4. Borgulya J, Bruderer H, Bernauer K, Zuercher G, Da Prada M (1989) Catechol-O-methyltranferase-inhibiting pyrocatechol derivatives: synthesis and structure-activity studies. Helv Chim Acta 72:952–968

    CAS  Google Scholar 

  5. Costa ML, Loria A, Marchetti M, Balaszczuk AM, Arranz CT (2002) Effects of dopamine and nitric oxide on arterial pressure and renal function in volume expansion. Clin Exp Pharmacol Physiol 29:772–776

    CAS  PubMed  Google Scholar 

  6. De Santi C, Giulianotti PC, Pietrabissa A, Mosca F, Pacifici GM (1998) Catechol-O-methyltransferase: variation in enzyme activity and inhibition by entacapone and tolcapone. Eur J Clin Pharmacol 54: 215–219

    CAS  PubMed  Google Scholar 

  7. Eklöf A-C, Holtbäck U, Sundelöf M, Chen S, Aperia A (1997) Inhibition of COMT induces dopamine-dependent natriuresis and inhibition of proximal tubular Na+, K+-ATPase. Kidney Int 52:742–747

    PubMed  Google Scholar 

  8. Fernandez-Pardal J, Saavedra JM (1982) Catecholamines in discrete kidney regions. Changes in salt-sensitive Dahl hypertensive rats. Hypertension 4:821–826

    CAS  PubMed  Google Scholar 

  9. Hansell P, Fasching A (1991) The effect of dopamine receptor blockade on natriuresis is dependent on the degree of hypervolemia. Kidney Int 39:253–258

    CAS  PubMed  Google Scholar 

  10. Hansell P, Odlind C, Mannisto PT (1998) Different renal effects of two inhibitors of catechol-O-methylation in the rat: entacapone and CGP 28014. Acta Physiol Scand 162:489–494

    CAS  PubMed  Google Scholar 

  11. Huo TL, Grenader A, Blandina P, Healy DP (1991) Prostaglandin E2 production in rat IMCD cells II Possible role for locally formed dopamine. Am J Physiol 261:F655–F662

    CAS  PubMed  Google Scholar 

  12. Hussain T, Lokhandwala MF (2003) Renal dopamine receptors and hypertension. Exp Biol Med 228:134–142

    CAS  Google Scholar 

  13. Ibarra FR, Aguirre J, Nowicki S, Barontini M, Arrizurieta EE, Armando I (1996) Demethylation of 3-O-methyldopa in the kidney: a possible source for dopamine in urine. Am J Physiol 270:F862–F868

    CAS  PubMed  Google Scholar 

  14. Ibarra FR, Aperia A, Svensson L-B, Eklöf A-C, Greengard P (1993) Bidirectional regulation of Na+,K+-ATPase activity by dopamine and an α-adrenergic agonist. Proc Natl Acad Sci USA 90:21–24

    CAS  PubMed  Google Scholar 

  15. Jose PA, Eisner GM, Felder RA (1998) Renal dopamine receptors in health and hypertension. Pharmacol Ther 80:149–182

    CAS  PubMed  Google Scholar 

  16. Kato T, Dong B, Ishii K, Kinemuchi H (1986) Brain dialysis: in vivo metabolism of dopamine and serotonin by monoamine oxidase A but not B in the striatum of unrestrained rats. J Neurochem 46:1277–1282

    CAS  PubMed  Google Scholar 

  17. Muhlbauer B, Gleiter CH, Gies C, Luippold G, Loschmann PA (1997) Renal response to infusion of dopamine precursors in anaesthetized rats. Naunyn Schmiedeberg’s Arch Pharmacol 356:838–845

    CAS  Google Scholar 

  18. Odlind C, Göransson V, Reenilä I, Hansell P (1999) Regulation of dopamine-induced natriuresis by the dopamine-metabolizing enzyme catechol-O-methyltransferase. Exp Nephrol 7:314–322

    CAS  PubMed  Google Scholar 

  19. Pestana M, Jardim H, Serrao P, Soares Da Silva P, Guerra L (1998) Reduced urinary excretion of dopamine and metabolites in chronic renal parenchymal disease. Kidney Blood Press Res 21:59–65

    CAS  PubMed  Google Scholar 

  20. Petrovic T, Anderson WP, Bell C (1986) Neuronal and non-neuronal contributions to renal catecholamine content in the dog. J Neurochem 47:423–425

    CAS  PubMed  Google Scholar 

  21. Soares Da Silva P, Pestana M, Fernandes MH (1993) Involvement of tubular sodium in the formation of dopamine in the human renal cortex. J Am Soc Nephrol 3:1591–1599

    CAS  PubMed  Google Scholar 

  22. Vieira-Coelho MA, Gomes P, Serrao MP, Soares Da Silva P (2001) D1-like dopamine receptor activation and natriuresis by nitrocatechol COMT inhibitors. Kidney Int 59:1683–1694

    CAS  PubMed  Google Scholar 

  23. Vyas SJ, Jadhav AL, Eichberg J, Lokhandwala MF (1992) Dopamine receptor-mediated activation of phospholipase C is associated with natriuresis during high salt intake. Am J Physiol 262:F494–F498

    CAS  PubMed  Google Scholar 

  24. Wang Y, Berndt TJ, Gross JM, Peterson MA, So MJ, Knox FG (2001) Effect of inhibition of MAO and COMT on intrarenal dopamine and serotonin and on renal function. Am J Physiol 280:R248–R254

    CAS  Google Scholar 

Download references

Acknowledgements

The present work was supported by a grant R. Carrillo, A. Oñativia 2001 of Ministerio de Salud, Argentina and by Agencia Nacional de Promoción Científica y Tecnológica, PICT 00-05-8658 and PIPs 573/98, 2867/01 and PEI 6477/03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando R. Ibarra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibarra, F.R., Armando, I., Nowicki, S. et al. Dopamine is metabolised by different enzymes along the rat nephron. Pflugers Arch - Eur J Physiol 450, 185–191 (2005). https://doi.org/10.1007/s00424-005-1386-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-1386-6

Keywords

Navigation