Skip to main content
Log in

On the temperature and tension dependence of the outer hair cell lateral membrane conductance G metL and its relation to prestin

  • Cell and Molecular Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Recently, we identified an outer hair cell (OHC) lateral membrane conductance, G metL, that colocalizes with prestin and passes Cl, thereby influencing prestin’s (SLC26A5) electromechanical activity. In this study, we report on a comparison of the temperature and tension dependence of G metL and prestin. Though we find significant temperature and tension dependence of each, substantial differences exist which indicate their independent identity. The following data support this conclusion: (1) The voltage dependence of G metL does not follow that of prestin’s nonlinear capacitance (NLC) function when the latter is shifted by either temperature or membrane tension; (2) Unlike native OHCs whose NLC can be modulated by influx of extracellular Cl, prestin-transfected Chinese hamster ovary (CHO) cells do not show this phenomenon; (3) Stretch-sensitive, single channel currents are not evidenced after prestin transfection in CHO cells; and (4) There is no correlation between prestin expression level (gauged via NLC) and transmembrane current through G metL. Thus, G metL must result from the activity of another molecular species within the lateral membrane of the OHC. A clue to its identity is the conductance’s nonlinear temperature dependence in contrast to prestin and other OHC conductances’ linear dependence. Whereas K+ conductances in OHCs present a uniform Q 10 close to 1.2, G metL shows a bimodal Q 10, with a Q 10 of 1.5 below 34°C and a Q 10 of greater than 4 and above. The dissociation of SLC26A5 (prestin) and G metL theoretically provides for a modifiable anionic feedback to prestin via the degree of spatial separation between these interacting partners within the OHC lateral membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Belyantseva I, Adler HJ, Curi R, Frolenkov GI, Kachar B (2000) Expression and localization of prestin and the sugar transporter GLUT-5 during development of electromotility in cochlear outer hair cells. J Neurosci 20:RC116

    PubMed  CAS  Google Scholar 

  2. Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196

    Article  PubMed  CAS  Google Scholar 

  3. Chan DK, Hudspeth AJ (2005) Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nat Neurosci 8:149–155

    Article  PubMed  CAS  Google Scholar 

  4. Choi I, Aalkjaer C, Boulpaep EL, Boron WF (2000) An electroneutral sodium/bicarbonate cotransporter NBCn1 and associated sodium channel. Nature 405:571–575

    Article  PubMed  CAS  Google Scholar 

  5. Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano A, Cheung EL, Derfler BH, Duggan A, Geleoc GS, Gray PA, Hoffman MP, Rehm HL, Tamasauskas D, Zhang DS (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723–730

    Article  PubMed  CAS  Google Scholar 

  6. Gale JE, Ashmore JF (1994) Charge displacement induced by rapid stretch in the basolateral membrane of the guinea-pig outer hair cell. Proc R Soc Lond B Biol Sci 255:243–249

    Article  CAS  Google Scholar 

  7. Gunthorpe MJ, Benham CD, Randall A, Davis JB (2002) The diversity in the vanilloid (TRPV) receptor family of ion channels. Trends Pharmacol Sci 23:183–191

    Article  PubMed  CAS  Google Scholar 

  8. Hasegawa H, Skach W, Baker O, Calayag MC, Lingappa V, Verkman AS (1992) A multifunctional aqueous channel formed by CFTR. Science 258:1477–1479

    Article  PubMed  CAS  Google Scholar 

  9. Iwasa KH (1993) Effect of stress on the membrane capacitance of the auditory outer hair cell. Biophys J 65:492–498

    Article  PubMed  CAS  Google Scholar 

  10. Iwasa KH (1994) A membrane motor model for the fast motility of the outer hair cell. J Acoust Soc Am 96:2216–2224

    Article  PubMed  CAS  Google Scholar 

  11. Kakehata S, Santos-Sacchi J (1995) Membrane tension directly shifts voltage dependence of outer hair cell motility and associated gating charge. Biophys J 68:2190–2197

    PubMed  CAS  Google Scholar 

  12. Kennedy HJ, Evans MG, Crawford AC, Fettiplace R (2003) Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells. Nat Neurosci 6:832–836

    Article  PubMed  CAS  Google Scholar 

  13. Kim KH, Shcheynikov N, Wang YX, Muallem S (2005) SLC26A7 is a Cl channel regulated by intracellular pH. J Biol Chem 280:6463–6470

    Article  PubMed  CAS  Google Scholar 

  14. Liberman MC, Gao J, He DZ, Wu X, Jia S, Zuo J (2002) Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419:300–304

    Article  PubMed  CAS  Google Scholar 

  15. Ludwig J, Oliver D, Frank G, Klocker N, Gummer AW, Fakler B (2001) Reciprocal electromechanical properties of rat prestin: the motor molecule from rat outer hair cells. Proc Natl Acad Sci U S A 98:4178–4183

    Article  PubMed  CAS  Google Scholar 

  16. Meltzer J, Santos-Sacchi J (2001) Temperature dependence of non-linear capacitance in human embryonic kidney cells transfected with prestin, the outer hair cell motor protein. Neurosci Lett 313:141–144

    Article  PubMed  CAS  Google Scholar 

  17. Meltzer J, Santos-Sacchi J (2001) Temperature dependence of non-linear capacitance in human embryonic kidney cells transfected with prestin, the outer hair cell motor protein. Neurosci Lett 313:141–144

    Article  PubMed  CAS  Google Scholar 

  18. Navaratnam D, Bai JP, Samaranayake H, Santos-Sacchi J (2005) N-terminal-mediated homomultimerization of prestin, the outer hair cell motor protein. Biophys J 89:3345–3352

    Article  PubMed  CAS  Google Scholar 

  19. Oliver D, He DZ, Klocker N, Ludwig J, Schulte U, Waldegger S, Ruppersberg JP, Dallos P, Fakler B (2001) Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein. Science 292:2340–2343

    Article  PubMed  CAS  Google Scholar 

  20. Otis TS, Jahr CE (1998) Anion currents and predicted glutamate flux through a neuronal glutamate transporter. J Neurosci 18:7099–7110

    PubMed  CAS  Google Scholar 

  21. Rybalchenko V, Santos-Sacchi J (2003) Cl flux through a non-selective, stretch-sensitive conductance influences the outer hair cell motor of the guinea-pig. J Physiol 547:873–891

    Article  PubMed  CAS  Google Scholar 

  22. Santos-Sacchi J (1991) Reversible inhibition of voltage-dependent outer hair cell motility and capacitance. J Neurosci 11:3096–3110

    PubMed  CAS  Google Scholar 

  23. Santos-Sacchi J (1993) Harmonics of outer hair cell motility. Biophys J 65:2217–2227

    PubMed  CAS  Google Scholar 

  24. Santos-Sacchi J (2004) Determination of cell capacitance using the exact empirical solution of partial derivative Y/partial derivative C-m and its phase angle. Biophys J 87:714–727

    Article  PubMed  CAS  Google Scholar 

  25. Santos-Sacchi J, Huang G (1998) Temperature dependence of outer hair cell nonlinear capacitance. Hear Res 116:99–106

    Article  PubMed  CAS  Google Scholar 

  26. Santos-Sacchi J, Kakehata S, Takahashi S (1998) Effects of membrane potential on the voltage dependence of motility-related charge in outer hair cells of the guinea-pig. J Physiol (Lond) 510(1):225–235

    Article  CAS  Google Scholar 

  27. Santos-Sacchi J, Shen W, Zheng J, Dallos P (2001) Effects of membrane potential and tension on prestin, the outer hair cell lateral membrane motor protein. J Physiol 531:661–666

    Article  PubMed  CAS  Google Scholar 

  28. Santos-Sacchi J, Wu M (2004) Protein- and lipid-reactive agents alter outer hair cell lateral membrane motor charge movement. J Membr Biol 200:83–92

    Article  PubMed  CAS  Google Scholar 

  29. Song L, Seeger A, Santos-Sacchi J (2004) On membrane motor activity and chloride flux in the outer hair cell: lessons learned from the environmental toxin tributyltin. Biophys J 88:2350–2362

    Article  PubMed  CAS  Google Scholar 

  30. Zheng J, Aguinaga C, Anderson C, Miller K, Dallos P (2005) Prestin’s interaction with CFTR enhances its function. Abstract of 28th meeting of the association for research in otolaryngology, New Orleans, LA

    Google Scholar 

  31. Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by NIH NIDCD grant DC000273 to JSS and grant K08 DC05352 to DN. We also thank Margaret Mazzucco for the technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Santos-Sacchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos-Sacchi, J., Rybalchenko, V., Bai, JP. et al. On the temperature and tension dependence of the outer hair cell lateral membrane conductance G metL and its relation to prestin. Pflugers Arch - Eur J Physiol 452, 283–289 (2006). https://doi.org/10.1007/s00424-005-0037-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-0037-2

Keywords

Navigation