Skip to main content

Advertisement

Log in

The 2P-domain K+ channels: role in apoptosis and tumorigenesis

  • Invited Review
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Two-pore (2P)-domain K+ channels have been shown recently to play a critical role in both cell apoptosis and tumorigenesis. The activity of two-pore, (TWIK)-related acid-sensitive-3 (TASK-3) K+ channels, is responsible for K+-dependent apoptosis of cultured cerebellar granule neurons. Neuron death can be prevented by conditions that specifically reduce K+ efflux through the TASK-3 channels. Moreover, genetic transfer of TASK subunits into hippocampal neurons that lack TASK-3, induces apoptosis. These results indicate a direct link between TASK K+ channel activity and the physiological process of programmed cell death. The TASK-3 K+ channel gene has also been shown to be amplified genomically and over-expressed in a significant number of breast tumours. TASK-3 has a potent oncogenic potential that appears to be related directly to its K+ channel function. In the present review, we will examine the pro-apoptotic and oncogenic properties of TASK-3. We will discuss: (1) the molecular and functional properties of the novel family of mammalian 2P domain K+ channels; (2) the role of TASK-3 in cerebellar granule neuron apoptosis and (3) the role of TASK-3 in breast tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2A, B
Fig. 3A, B
Fig. 4A, B
Fig. 5A, B

Similar content being viewed by others

References

  1. Patel AJ, Honore E (2001) Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci 24:339–346

    Google Scholar 

  2. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Google Scholar 

  3. Lesage F, Lazdunski M (2000) Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol 279:F793–F801

    Google Scholar 

  4. O’Connell AD, Morton MJ, Hunter M (2002) Two-pore domain K+ channels-molecular sensors. Biochim Biophys Acta 1566:152–161

    Google Scholar 

  5. Talley EM, Sirois JE, Lei Q, Bayliss DA (2003) Two-pore-Domain (KCNK) potassium channels: dynamic roles in neuronal function. Neuroscientist 9:46–56

    Google Scholar 

  6. Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G, Barhanin J (1996) TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J 15:1004–1011

    Google Scholar 

  7. Talley EM, Solorzano G, Lei Q, Kim D, Bayliss DA (2001) CNS distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci 21:7491–505

    Google Scholar 

  8. Medhurst AD, Rennie G, Chapman CG, Meadows H, Duckworth MD, Kelsell RE, Gloger II, Pangalos MN (2001) Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery. Brain Res Mol Brain Res 86:101–114

    Google Scholar 

  9. Orias M, Velazquez H, Tung F, Lee G, Desir GV (1997) Cloning and localization of a double-pore K channel, KCNK1: exclusive expression in distal nephron segments. Am J Physiol 273:663–666

    Google Scholar 

  10. Cluzeaud F, Reyes R, Escoubet B, Fay M, Lazdunski M, Bonvalet JP, Lesage F, Farman N (1998) Expression of TWIK-1, a novel weakly inward rectifying potassium channel in rat kidney. Am J Physiol 275:C1602–C1609

    Google Scholar 

  11. Wang Z, Yue L, White M, Pelletier G, Nattel S (1998) Differential distribution of inward rectifier potassium channel transcripts in human atrium versus ventricle. Circulation 98:2422–2428

    Google Scholar 

  12. Lesage F, Reyes R, Fink M, Duprat F, Guillemare E, Lazdunski M (1996) Dimerization of TWIK-1 K+ channel subunits via a disulfide bridge. EMBO J 15:6400–6407

    Google Scholar 

  13. Pountney DJ, Gulkarov I, Vega-Saenz de Miera E, Holmes D, Saganich M, Rudy B, Artman M, Coetzee WA (1999) Identification and cloning of TWIK-originated similarity sequence (TOSS): a novel human 2-pore K+ channel principal subunit. FEBS Lett 450:191–196

    Google Scholar 

  14. Patel AJ, Maingret F, Magnone V, Fosset M, Lazdunski M, Honoré E (2000) TWIK-2, an inactivating 2P domain K+ channel. J Biol Chem 275:28722–28730

    Google Scholar 

  15. Chavez RA, Gray AT, Zhao BB, Kindler CH, Mazurek MJ, Mehta Y, Forsayeth JR, Yost CS (1999) TWIK-2, a new weak inward rectifying member of the tandem pore domain potassium channel family. J Biol Chem 274:7887–7892

    Google Scholar 

  16. Bockenhauer D, Nimmakayalu MA, Ward DC, Goldstein SA, Gallagher PG (2000) Genomic organization and chromosomal localization of the murine 2P domain potassium channel gene Kcnk8: conservation of gene structure in 2P domain potassium channels. Gene 261:365–372

    Google Scholar 

  17. Salinas M, Reyes R, Lesage F, Fosset M, Heurteaux C, Romey G, Lazdunski M (1999) Cloning of a new mouse two-P domain channel subunit and a human homologue with a unique pore structure. J Biol Chem 274:11751–11760

    Google Scholar 

  18. Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M (1997) TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J 16:5464–5471

    Google Scholar 

  19. Leonoudakis D, Gray AT, Winegar BD, Kindler CH, Harada M, Taylor DM, Chavez RA, Forsayeth JR, Yost CS (1998) An open rectifier potassium channel with two pore domains in tandem cloned from rat cerebellum. J Neurosci 18:868–877

    Google Scholar 

  20. Kim D, Fujita A, Horio Y, Kurachi Y (1998) Cloning and functional expression of a novel cardiac two-pore background K+ channel (cTBAK-1). Circ Res 82:513–518

    Google Scholar 

  21. Buckler K, Williams B, Honoré E (2000) An oxygen-, acid- and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J Physiol (Lond) 525:135–142

  22. Yamamoto Y, Kummer W, Atoji Y, Suzuki Y (2002) TASK-1, TASK-2, TASK-3 and TRAAK immunoreactivities in the rat carotid body. Brain Res Mol Brain Res 950:304–307

    Google Scholar 

  23. Gurney AM, Osipenko ON, MacMillan D, Kempsill FEJ (2002) Potassium channels underlying the resting potential of pulmonary artery smooth muscle cells. Clin Exp Phamacol Physiol 29:330–333

    Google Scholar 

  24. Hartness ME, Lewis A, Searle GJ, O’Kelly I, Peers C, Kemp PJ (2001) Combined antisense and pharmacological approaches implicate hTASK as an airway O2 sensing K+ channel. J Biol Chem 276:26499–26508

    Google Scholar 

  25. Lopes CM, Gallagher PG, Buck ME, Butler MH, Goldstein SA (2000) Proton block and voltage gating are potassium-dependent in the cardiac leak channel Kcnk3. J Biol Chem 275:16969–16978

    Google Scholar 

  26. Lopes CM, Zilberberg N, Goldstein SA (2001) Block of Kcnk3 by protons. Evidence that 2-P-domain potassium channel subunits function as homodimers. J Biol Chem 276:24449–24452

    Google Scholar 

  27. Morton MJ, O’Connell AD, Sivaprasadarao A, Hunter M (2003) Determinants of pH sensing in the two-pore domain K+ channels TASK-1 and -2. Pflugers Arch 445:577–583

    Google Scholar 

  28. Han J, Truell J, Gnatenco C, Kim D (2002) Characterization of four types of background potassium channels in rat cerebellar granule neurons. J Physiol (Lond) 542:431–44

  29. Kindler CH, Yost CS, Gray AT (1999) Local anaesthetic inhibition of baseline potassium channels with two pore domains in tandem. Anesthesiology 90:1092–1102

    Google Scholar 

  30. Maingret F, Patel AJ, Lazdunski M, Honore E (2001) The endocannabinoid anandamide is a direct and selective blocker of the background K+ channel TASK-1. EMBO J 20:47–54

    Google Scholar 

  31. Patel AJ, Honore E, Lesage F, Fink M, Romey G, Lazdunski M (1999) Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 2:422–426

    Google Scholar 

  32. Talley EM, Bayliss DA (2002) Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels: volatile anesthetics and neurotransmitters share a molecular site of action. J Biol Chem 277:17733–17742

    Google Scholar 

  33. Sirois JE, Lei Q, Talley EM, Lynch C 3rd, Bayliss DA (2000) The TASK-1 two-pore domain K+ channel is a molecular substrate for neuronal effects of inhalation anesthetics. J Neurosci 20:6347–6354

    Google Scholar 

  34. Talley EM, Lei Q, Sirois JE, Bayliss DA (2000) TASK-1, a two-pore domain K+ channel, is modulated by multiple neurotransmitters in motoneurons. Neuron 25:399–410

    Google Scholar 

  35. Millar JA, Barratt L, Southan AP, Page KM, Fyffe RE, Robertson B, Mathie A (2000) A functional role for the two-pore domain potassium channel TASK-1 in cerebellar granule neurons. Proc Natl Acad Sci USA 97:3614–3618

    Google Scholar 

  36. Czirjak G, Fischer T, Spat A, Lesage F, Enyedi P (2000) TASK (TWIK-related acid-sensitive K+ channel) is expressed in glomerulosa cells of rat adrenal cortex and inhibited by angiotensin II. Mol Endocrinol 14:863–874

    Google Scholar 

  37. Czirjak G, Petheo GL, Spat A, Enyedi P (2001) Inhibition of TASK-1 potassium channel by phospholipase C. Am J Physiol 281:C700–C708

    Google Scholar 

  38. Chemin J, Girard C, Duprat F, Lesage F, Romey G, Lazdunski M (2003) Mechanisms underlying excitatory effects of group I metabotropic glutamate receptors via inhibition of 2P domain K+ channels. EMBO J 22:5403–5411

    Google Scholar 

  39. Barbuti A, Ishii S, Shimizu T, Robinson RB, Feinmark SJ (2002) Block of the background K+ channel TASK-1 contributes to arrhythmogenic effects of platelet-activating factor. Am J Physiol 282:H2024–H2030

    Google Scholar 

  40. Bayliss DA, Talley EM, Sirois JE, Lei Q (2001) TASK-1 is a highly modulated pH-sensitive ‘leak’ K+ channel expressed in brainstem respiratory neurons. Respir Physiol 129:159–174

    Google Scholar 

  41. Washburn CP, Sirois JE, Talley EM, Guyenet PG, Bayliss DA (2002) Serotonergic raphe neurons express TASK channel transcripts and a TASK-like pH- and halothane-sensitive K+ conductance. J Neurosci 22:1256–1265

    Google Scholar 

  42. Buckler KJ (1997) A novel oxygen-sensitive potassium current in rat carotid body type I cells. J Physiol (Lond) 498:649–662

  43. Buckler KJ, Vaughan-Jones RD (1998) Effects of mitochondrial uncouplers on intracellular calcium, pH and membrane potential in rat carotid body type I cells. J Physiol (Lond) 513:819–833

  44. Lewis A, Hartness ME, Chapman CG, Fearon IM, Meadows HJ, Peers C, Kemp PJ (2001) Recombinant hTASK1 is an O2-sensitive K+ channel. Biochem Biophys Res Commun 285:1290–1294

    Google Scholar 

  45. Brickley SG, Revilla V, Cull-Candy SG, Wisden W, Farrant M (2001) Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature 409:88–92

    Google Scholar 

  46. Girard C, Tinel N, Terrenoire C, Romey G, Lazdunski M, Borsotto M (2002) p11, an annexin II subunit, an auxiliary protein associated with the background K+ channel, TASK-1. EMBO J 21:4439–4448

    Google Scholar 

  47. O’Kelly I, Butler M, Zilberberg N, Goldstein S (2002) Forward transport. 14-3-3 binding overcomes retention in endoplasmic reticulum by dibasic signals. Cell 111:577–588

    Google Scholar 

  48. Rajan S, Preisig-Muller R, Wischmeyer E, Nehring R, Hanley PJ, Renigunta V, Musset B, Schlichthorl G, Derst C, Karschin A, Daut J (2002) Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3. J Physiol (Lond) 545:13–26

  49. Chapman CG, Meadows HJ, Godden RJ, Campbell DA, Duckworth M, Kelsell RE, Murdock PR, Randall AD, Rennie GI, Gloger IS (2000) Cloning, localisation and functional expression of a novel human, cerebellum specific, two pore domain potassium channel. Brain Res Mol Brain Res 82:74–83

    Google Scholar 

  50. Rajan S, Wischmeyer E, Liu GX, Preisig-Muller R, Daut J, Karschin A, Derst C (2000) TASK-3, a novel tandem pore-domain acid-sensitive K+ channel: an extracellular histidine as pH sensor. J Biol Chem 275:16650–16657

    Google Scholar 

  51. Kim Y, Bang H, Kim D (2000) TASK-3, a new member of the tandem pore K+ channel family. J Biol Chem 275:9340–9347

    Google Scholar 

  52. Meadows HJ, Randall AD (2001) Functional characterisation of human TASK-3, an acid-sensitive two-pore domain potassium channel. Neuropharmacology 40:551–559

    Google Scholar 

  53. Czirjak G, Enyedi P (2002) Formation of functional heterodimers between the TASK-1 and TASK-3 two-pore domain potassium channel subunits. J Biol Chem 277:5426–5432

    Google Scholar 

  54. Czirjak G, Enyedi P (2003) Ruthenium red inhibits TASK-3 potassium channel by interconnecting glutamate 70 of the two subunits. Mol Pharmacol 63:646–652

    Google Scholar 

  55. Czirjak G, Enyedi P (2002) TASK-3 dominates the background potassium conductance in rat adrenal glomerulosa cells. Mol Endocrinol 16:621–629

    Google Scholar 

  56. O’Kelly I, Stephens RH, Peers C, Kemp PJ (1999) Potential identification of the O2-sensitive K+ current in a human neuroepithelial body-derived cell line. Am J Physiol 276:L96–L104

    Google Scholar 

  57. Lauritzen I, Zanzouri M, Honore E, Duprat F, Ehrengruber MU, Lazdunski M, Patel AJ (2003) K+-dependent cerebellar granule neuron apoptosis: role of TASK leak K+ channels. J Biol Chem 278:32068–32076

    Google Scholar 

  58. Kang D, Han J, Talley EM, Bayliss DA, Kim D (2004) Functional expression of TASK-1/TASK-3 heteromers in cerebellar granule cells. J Physiol (Lond) 554:64–77

  59. Ashmole I, Goodwin PA, Stanfield PR (2001) TASK-5, a novel member of the tandem pore K+ channel family. Pflugers Arch 442:828–833

    Google Scholar 

  60. Karschin C, Wischmeyer E, Preisig-Muller R, Rajan S, Derst C, Grzeschik KH, Daut J, Karschin A (2001) Expression pattern in brain of TASK-1, TASK-3, and a tandem pore domain K+ channel subunit, TASK-5, associated with the central auditory nervous system. Mol Cell Neurosci 18:632–648

    Google Scholar 

  61. Vega-Saenz de Miera E, Lau DH, Zhadina M, Pountney D, Coetzee WA, Rudy B (2001) KT3.2 and KT3.3, two novel human two-pore K+ channels closely related to TASK-1. J Neurophysiol 86:130–142

    Google Scholar 

  62. Bang H, Kim Y, Kim D (2000) TREK-2, a new member of the mechanosensitive tandem pore K+ channel family. J Biol Chem 275:17412–17419

    Google Scholar 

  63. Fink M, Duprat F, Lesage F, Reyes R, Romey G, Heurteaux C, Lazdunski M (1996) Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. EMBO J 15:6854–6862

    Google Scholar 

  64. Fink M, Lesage F, Duprat F, Heurteaux C, Reyes R, Fosset M, Lazdunski M (1998) A neuronal two P domain K+ channel activated by arachidonic acid and polyunsaturated fatty acid. EMBO J 17:3297–3308

    Google Scholar 

  65. Lesage F, Terrenoire C, Romey G, Lazdunski M (2000) Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J Biol Chem 275:28398–28405

    Google Scholar 

  66. Meadows HJ, Benham CD, Cairns W, Gloger I, Jennings C, Medhurst AD, Murdock P, Chapman CG (2000) Cloning, localisation and functional expression of the human orthologue of the TREK-1 potassium channel. Pflugers Arch 439:714–722

    Google Scholar 

  67. Gnatenco C, Han J, Snyder AK, Kim D (2002) Functional expression of TREK-2 K+ channel in cultured rat brain astrocytes. Brain Res Mol Brain Res 931:56–67

    Google Scholar 

  68. Patel AJ, Honoré E, Maingret F, Lesage F, Fink M, Duprat F, Lazdunski M (1998) A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J 17:4283–4290

    Google Scholar 

  69. Maingret F, Patel AJ, Lesage F, Lazdunski M, Honore E (1999) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274:26691–26696

    Google Scholar 

  70. Maingret F, Fosset M, Lesage F, Lazdunski M, Honoré E (1999) TRAAK is a mammalian neuronal mechano-gated K+ channel. J Biol Chem 274:1381–1387

    Google Scholar 

  71. Maingret F, Honoré E, Lazdunski M, Patel AJ (2002) Molecular basis of the voltage-dependent gating of TREK-1, a mechanosensitive K+ channel. Biochem Biophys Res Commun 292:339–346

    Google Scholar 

  72. Bockenhauer D, Zilberberg N, Goldstein SA (2001) KCNK2: reversible conversion of a hippocampal potassium leak into a voltage-dependent channel. Nat Neurosci 4:486–491

    Google Scholar 

  73. Patel AJ, Lazdunski M, Honoré E (2001) Lipid and mechano-gated 2P domain K+ channels. Curr Opin Cell Biol 13:422–428

    Google Scholar 

  74. Maingret F, Lauritzen I, Patel A, Heurteaux C, Reyes R, Lesage F, Lazdunski M, Honoré E (2000) TREK-1 is a heat-activated background K+ channel. EMBO J 19:2483–2491

    Google Scholar 

  75. Honoré E, Maingret F, Lazdunski M, Patel AJ (2002) An intracellular proton sensor commands lipid- and mechano-gating of the K+ channel TREK-1. EMBO J 21:2968–2976

    Google Scholar 

  76. Kim Y, Bang H, Gnatenco C, Kim D (2001) Synergistic interaction and the role of C-terminus in the activation of TRAAK K+ channels by pressure, free fatty acids and alkali. Pflugers Arch 442:64–72

    Google Scholar 

  77. Kim Y, Gnatenco C, Bang H, Kim D (2001) Localization of TREK-2 K+ channel domains that regulate channel kinetics and sensitivity to pressure, fatty acids and pHi. Pflugers Arch 2001:952–960

    Google Scholar 

  78. Maingret F, Patel AJ, Lesage F, Lazdunski M, Honoré E (2000) Lysophospholipids open the two P domain mechano-gated K+ channels TREK-1 and TRAAK. J Biol Chem 275:10128–10133

    Google Scholar 

  79. Duprat F, Lesage F, Patel AJ, Fink M, Romey G, Lazdunski M (2000) The neuroprotective agent riluzole activates the two P domain K+ channels TREK-1 and TRAAK. Mol Pharmacol 57:906–912

    Google Scholar 

  80. Meadows H, Chapman CG, Duckworth M, Kelsell RE, Murdock PR, Nasir S, Rennie G, Randall AD (2001) The neuroprotective agent sipatrigine (BW619C89) potently inhibits the human tandem pore-domain K+ channels TREK-1 and TRAAK. Brain Res Mol Brain Res 892:94–101

    Google Scholar 

  81. Enyeart JJ, Xu L, Danthi S, Enyeart JA (2002) An ACTH- and ATP-regulated background K+ channel in adrenocortical cells is TREK-1. J Biol Chem 277:49286–49199

    Google Scholar 

  82. Gu W, Schlichthorl G, Hirsch JR, Engels H, Karschin C, Karschin A, Derst C, Steinlein OK, Daut J (2002) Expression pattern and functional characteristics of two novel splice variants of the two-pore-domain potassium channel TREK-2. J Physiol (Lond) 539:657–668

  83. Koh SD, Monaghan KM, Sergeant GP, Ro S, Walker RL, Sanders KM, Horowitz B (2001) TREK-1 regulation by nitric oxide and cGMP-dependent protein kinase. J Biol Chem 47: 44338–44346

    Google Scholar 

  84. Miller P, Kemp PJ, Lewis A, Chapman CG, Meadows H, Peers C (2003) Acute hypoxia occludes hTREK-1 modulation: re-evaluation of the potential role of tandem P domain K+ channels in central neuroprotection. J Physiol (Lond) 548:31–37

  85. Reyes R, Duprat F, Lesage F, Fink M, Farman N, Lazdunski M (1998) Cloning and expression of a novel pH-sensitive two pore domain potassium channel from human kidney. J Biol Chem 273:30863–30869

    Google Scholar 

  86. Gray AT, Zhao BB, Kindler CH, Winegar BD, Mazurek MJ, Xu J, Chavez RA, Forsayeth JR, Yost CS (2000) Volatile anesthetics activate the human tandem pore domain baseline K+ channel KCNK5. Anesthesiology 92:1722–1730

    Google Scholar 

  87. Niemeyer MI, Cid LP, Barros LF, Sepulveda FV (2001) Modulation of the two-pore domain acid-sensitive K+ channel TASK-2 (KCNK5) by changes in cell volume. J Biol Chem 276:43166–43174

    Google Scholar 

  88. Niemeyer MI, Cid LP, Sepulveda FV (2001) K+ conductance activated during regulatory volume decrease. The channels in Ehrlich cells and their possible molecular counterpart. Comp Biochem Physiol A Mol Integr Physiol 130:565–575

    Google Scholar 

  89. Barriere H, Belfodil R, Rubera I, Tauc M, Lesage F, Poujeol C, Guy N, Barhanin J, Poujeol P (2003) Role of TASK2 potassium channels regarding volume regulation in primary cultures of mouse proximal tubules. J Gen Physiol 122:177–190

    Google Scholar 

  90. Girard C, Duprat F, Terrenoire C, Tinel N, Fosset M, Romey G, Lazdunski M, Lesage F (2001) Genomic and functional characteristics of novel human pancreatic 2P domain potassium channels. Biochem Biophys Res Commun 282:249–256

    Google Scholar 

  91. Decher N, Maier M, Dittrich W, Gassenhuber J, Bruggemann A, Busch AE, Steinmeyer K (2001) Characterization of TASK-4, a novel member of the pH-sensitive, two-pore domain potassium channel family. FEBS Lett 492:84–89

    Google Scholar 

  92. Rajan S, Wischmeyer E, Karschin C, Preisig-Muller R, Grzeschik KH, Daut J, Karschin A, Derst C (2000) THIK-1 and THIK-2, a novel subfamily of tandem pore domain K+ channels. J Biol Chem 276:7302–7311

    Google Scholar 

  93. Sano Y, Inamura K, Miyake A, Mochizuki S, Kitada C, Yokoi H, Nozawa K, Okada H, Matsushime H, Furuichi K (2003) A novel two-pore domain K+ channel, TRESK, is localized in the spinal cord. J Biol Chem 278:27406–412

    Google Scholar 

  94. Pettmann B, Henderson CE (1998) Neuronal cell death. Neuron 20:633–647

    Google Scholar 

  95. Platoshyn O, Golovina VA, Bailey CL, Limsuwan A, Krick S, Juhaszova M, Seiden JE, Rubin LJ, Yuan JX (2000) Sustained membrane depolarization and pulmonary artery smooth muscle cell proliferation. Am J Physiol 279:C1540–C1549

    Google Scholar 

  96. Maeno E, Ishizaki Y, Kanaseki T, Hazama A, Okada Y (2000) Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc Natl Acad Sci USA 97:9487–9492

    Google Scholar 

  97. Hughes FM Jr, Bortner CD, Purdy GD, Cidlowski JA (1997) Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J Biol Chem 272:30567–30576

    Google Scholar 

  98. Yu SP, Yeh CH, Sensi SL, Gwag BJ, Canzoniero LM, Farhangrazi ZS, Ying HS, Tian M, Dugan LL, Choi DW (1997) Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278:114–117

    Google Scholar 

  99. Yu SP, Yeh C, Strasser U, Tian M, Choi DW (1999) NMDA receptor-mediated K+ efflux and neuronal apoptosis. Science 284:336–339

    Google Scholar 

  100. Nadeau H, Mckinney S, Anderson DJ, Lester HA (2000) ROMK1 (Kir1.1) causes apoptosis and chronic silencing of hippocampal neurons. J Neurophysiol 84:1062–1075

    Google Scholar 

  101. Heurteaux C, Bertaina V, Widmann C, Lazdunski M (1993) K+ channel openers prevent global ischemia-induced expression of c-fos, c-jun, heat shock protein, and amyloid beta-protein precursor genes and neuronal death in rat hippocampus. Proc Natl Acad Sci USA 90:9431–9435

    Google Scholar 

  102. Lauritzen I, De Weille JR, Lazdunski M (1997) The potassium channel opener (−)-cromakalim prevents glutamate-induced cell death in hippocampal neurons. J Neurochem 69:1570–1579

    Google Scholar 

  103. Yuan J, Lipinski M, Degterev A (2003) Diversity in the mechanisms of neuronal cell death. Neuron 40:401–413

    Google Scholar 

  104. Pardo LA, del Camino D, Sanchez A, Alves F, Bruggemann A, Beckh S, Stuhmer W (1999) Oncogenic potential of EAG K+ channels. EMBO J 18:5540–5547

    Google Scholar 

  105. Mu D, Chen L, Zhang X, See LH, Koch CM, Yen C, Tong JJ, Spiegel L, Nguyen KC, Servoss A, Peng Y, Pei L, Marks JR, Lowe S, Hoey T, Jan LY, McCombie WR, Wigler MH, Powers S (2003) Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell 3:297–302

    Google Scholar 

  106. Wang H, Zhang Y, Cao L, Han H, Wang J, Yang B, Nattel S, Wang Z (2002) HERG K+ channel, a regulator of tumor cell apoptosis and proliferation. Cancer Res 62:4843–4848

    Google Scholar 

  107. Lossi L, Mioletti S, Merighi A (2002) Synapse-independent and synapse-dependent apoptosis of cerebellar granule cells in postnatal rabbits occur at two subsequent but partly overlapping developmental stages. Neuroscience 112:509–523

    Google Scholar 

  108. Gallo V, Kingsbury A, Balazs R, Jorgensen OS (1987) The role of depolarization in the survival and differentiation of cerebellar granule cells in culture. J Neurosci 7:2203–2213

    Google Scholar 

  109. Wood KA, Dipasquale B, Youle RJ (1993) In situ labeling of granule cells for apoptosis-associated DNA fragmentation reveals different mechanisms of cell loss in developing cerebellum. Neuron 11:621–632

    Google Scholar 

  110. Watkins CS, Mathie A (1996) A non-inactivating K+ current sensitive to muscarinic receptor activation in rat cultured cerebellar granule neurons. J Physiol (Lond) 492:401–412

  111. Trimarchi JR, Liu L, Smith PJ, Keefe DL (2002) Apoptosis recruits two-pore domain potassium channels used for homeostatic volume regulation. Am J Physiol 282:C588–C594

    Google Scholar 

  112. Yu SP (2003) Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol 70:363–386

    Google Scholar 

  113. Yu SP, Choi DW (2000) Ions, cell volume, and apoptosis. Proc Natl Acad Sci USA 97:9360–9362

    Google Scholar 

  114. Okada Y, Maeno E (2001) Apoptosis, cell volume regulation and volume-regulatory chloride channels. Comp Biochem Physiol A Mol Integr Physiol 130:377–383

    Google Scholar 

  115. Fujikawa DG, Shinmei SS, Cai B (2000) Seizure-induced neuronal necrosis: implications for programmed cell death mechanisms. Epilepsia 41 Suppl 6:S9–S13

    Google Scholar 

  116. DeCoursey TE, Chandy KG, Gupta S, Cahalan MD (1984) Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature 307:465–468

    Google Scholar 

  117. Strobl JS, Wonderlin WF, Flynn DC (1995) Mitogenic signal transduction in human breast cancer cells. Gen Pharmacol 26:1643–1649

    Google Scholar 

  118. Pappone PA, Ortiz-Miranda SI (1993) Blockers of voltage-gated K+ channels inhibit proliferation of cultured brown fat cells. Am J Physiol 264:C1014–C1019

    Google Scholar 

  119. Nilius B, Wohlrab W (1992) Potassium channels and regulation of proliferation of human melanoma cells. J Physiol (Lond) 445:537–548

  120. Mauro T, Dixon DB, Komuves L, Hanley K, Pappone PA (1997) Keratinocyte K+ channels mediate Ca2+-induced differentiation. J Invest Dermatol 108:864–870

    Google Scholar 

  121. Skryma RN, Prevarskaya NB, Dufy-Barbe L, Odessa MF, Audin J, Dufy B (1997) Potassium conductance in the androgen-sensitive prostate cancer cell line, LNCaP: involvement in cell proliferation. Prostate 33:112–122

    Google Scholar 

  122. Pappas CA, Ritchie JM (1998) Effect of specific ion channel blockers on cultured Schwann cell proliferation. Glia 22:113–120

    Google Scholar 

  123. Zhou Q, Kwan HY, Chan HC, Jiang JL, Tam SC, Yao X (2003) Blockage of voltage-gated K+ channels inhibits adhesion and proliferation of hepatocarcinoma cells. Int J Mol Med 11:261–266

    Google Scholar 

  124. Wonderlin WF, Strobl JS (1996) Potassium channels, proliferation and G1 progression. J Membr Biol 154:91–107

    Google Scholar 

  125. Wang S, Melkoumian Z, Woodfork KA, Cather C, Davidson AG, Wonderlin WF, Strobl JS (1998) Evidence for an early G1 ionic event necessary for cell cycle progression and survival in the MCF-7 human breast carcinoma cell line. J Cell Physiol 176:456–464

    Google Scholar 

  126. Crociani O, Guasti L, Balzi M, Becchetti A, Wanke E, Olivotto M, Wymore RS, Arcangeli A (2003) Cell cycle-dependent expression of HERG1 and HERG1B isoforms in tumor cells. J Biol Chem 278:2947–2955

    Google Scholar 

  127. Whitfield JF, Bird RP, Chakravarthy BR, Isaacs RJ, Morley P (1995) Calcium-cell cycle regulator, differentiator, killer, chemopreventor, and maybe, tumor promoter. J Cell Biochem Suppl 22:74–91

    Google Scholar 

  128. Santella L (1998) The role of calcium in the cell cycle: facts and hypotheses. Biochem Biophys Res Commun 244:317–324

    Google Scholar 

  129. Santella L, Kyozuka K, De Riso L, Carafoli E (1998) Calcium, protease action, and the regulation of the cell cycle. Cell Calcium 23:123–130

    Google Scholar 

  130. Rouzaire-Dubois B, Dubois JM (1998) K+ channel block-induced mammalian neuroblastoma cell swelling: a possible mechanism to influence proliferation. J Physiol (Lond) 510:93–102

  131. Rouzaire-Dubois B, Milandri JB, Bostel S, Dubois JM (2000) Control of cell proliferation by cell volume alterations in rat C6 glioma cells. Pflugers Arch 440:881–888

    Google Scholar 

  132. Lisitsyn NA (1995) Representational difference analysis: finding the differences between genomes. Trends Genet 11:303–307

    Google Scholar 

  133. Pei L, Wiser O, Slavin A, Mu D, Powers S, Jan LY, Hoey T (2003) Oncogenic potential of TASK3 (Kcnk9) depends on K+ channel function. Proc Natl Acad Sci USA 100:7803–7807

    Google Scholar 

  134. Bianchi L, Wible B, Arcangeli A, Taglialatela M, Morra F, Castaldo P, Crociani O, Rosati B, Faravelli L, Olivotto M, Wanke E (1998) Herg encodes a K+ current highly conserved in tumors of different histogenesis: a selective advantage for cancer cells? Cancer Res 58:815–822

    Google Scholar 

  135. Cherubini A, Taddei GL, Crociani O, Paglierani M, Buccoliero AM, Fontana L, Noci I, Borri P, Borrani E, Giachi M, Becchetti A, Rosati B, Wanke E, Olivotto M, Arcangeli A (2000) HERG potassium channels are more frequently expressed in human endometrial cancer as compared to non-cancerous endometrium. Br J Cancer 83:1722–1729

    Google Scholar 

Download references

Acknowledgements

We are grateful to Eric Honoré for his valuable comments and suggestions on this review. Funding for this work was provided by the CNRS and the Paul Hamel Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda J. Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, A.J., Lazdunski, M. The 2P-domain K+ channels: role in apoptosis and tumorigenesis. Pflugers Arch - Eur J Physiol 448, 261–273 (2004). https://doi.org/10.1007/s00424-004-1255-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-004-1255-8

Keywords

Navigation