Skip to main content

Advertisement

Log in

Ruptured abdominal aortic aneurysm—epidemiology, predisposing factors, and biology

  • REVIEW ARTICLE
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Purpose

Abdominal aortic aneurysm is a common degenerative vascular disorder associated with sudden death due to aortic rupture. This review describes epidemiology, predisposing factors, and biology of ruptured abdominal aortic aneurysms (rAAAs).

Methods

Based on a selective literature search in Medline (PubMed), original publications, meta-analyses, systematic reviews, and Cochrane reviews were evaluated for rAAA.

Results

The hospital admission rate for rAAA is decreasing and is now in the range of approximately 10 per 100,000 population in men. Smoking contributes to about 50 % of population risk for rupture or surgically treated AAA. AAA rupture is a multifaceted biological process involving biochemical, cellular, and proteolytic influences, in addition to biomechanical factors. AAA rupture occurs when the stress (force per unit area) on the aneurysm wall exceeds wall strength. Proteolytic activities of matrix metalloproteinases have been implicated in aneurysm wall weakening and rupture. Aneurysm diameter is the most prominent predisposing factor for aneurysm growth and rupture. Wall stress, aneurysm shape and geometry, intraluminal thrombus, wall thickness, calcification, and metabolic activity influence the rupture risk.

Conclusion

The best conservative option to avoid AAA rupture consists in smoking cessation and control of hypertension. Many biological factors influence rupture risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karthikesalingam A, Holt PJ, Vidal-Diez A, Ozdemir BA, Poloniecki JD, Hinchliffe RJ, Thompson MM (2014) Mortality from ruptured abdominal aortic aneurysms: clinical lessons from a comparison of outcomes in England and the USA. Lancet 383(9921):963–969

    Article  PubMed  Google Scholar 

  2. Landenhed M, Engström G, Gottsäter A, Caulfield MP, Hedblad B, Newton-Cheh C, Melander O, Smith JG (2015) Risk profiles for aortic dissection and ruptured or surgically treated aneurysms: a prospective cohort study. J Am Heart Assoc 4, e001513

    Article  PubMed  PubMed Central  Google Scholar 

  3. Heikkinen M, Salenius JP, Auvinen O (2002) Ruptured abdominal aortic aneurysm in a well-defined geographic area. J Vasc Surg 36:291–296

    Article  CAS  PubMed  Google Scholar 

  4. Statistisches Bundesamt (2015) Tiefgegliederte Diagnosedaten der Krankenhauspatientinnen und –patienten 2013. www.destatis.de

  5. Schermerhorn ML, Bensley RP, Giles KA, Hurks R, Oʼmalley AJ, Cotterill P, Chaikof E, Landon BE (2012) Changes in abdominal aortic aneurysm rupture and short-term mortality, 1995–2008: a retrospective observational study. Ann Surg 256:651–658

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mani K, Björck M, Wanhainen A (2013) Changes in the management of infrarenal abdominal aortic aneurysm disease in Sweden. Br J Surg 100:638–644

    Article  CAS  PubMed  Google Scholar 

  7. Anjum A, von Allmen R, Greenhalgh R, Powell JT (2012) Explaining the decrease in mortality from abdominal aortic aneurysm rupture. Br J Surg 99:637–645

    Article  CAS  PubMed  Google Scholar 

  8. Choke E, Vijaynagar B, Thompson J, Nasim A, Bown MJ, Sayers RD (2012) Changing epidemiology of abdominal aortic aneurysms in England and Wales: older and more benign? Circulation 125:1617–1625

    Article  PubMed  Google Scholar 

  9. Reite A, Søreide K, Ellingsen CL, Kvaløy JT, Vetrhus M (2015) Epidemiology of ruptured abdominal aortic aneurysms in a well-defined Norwegian population with trends in incidence, intervention rate, and mortality. J Vasc Surg 61(5):1168–1174

  10. Parkinson F, Ferguson S, Lewis P, Williams IM, Twine CP; South East Wales Vascular Network (2015) Rupture rates of untreated large abdominal aortic aneurysms in patients unfit for elective repair. J Vasc Surg 61(6):1606–1612

  11. Robert N, Frank M, Avenin L, Hemery F, Becquemin JP (2014) Influence of atmospheric pressure on infrarenal abdominal aortic aneurysm rupture. Ann Vasc Surg 28:547–553

    Article  PubMed  Google Scholar 

  12. Vitale J, Manfredini R, Gallerani M, Mumoli N, Eagle KA, Ageno W, Dentali F (2014) Chronobiology of acute aortic rupture or dissection: a systematic review and a meta-analysis of the literature. Chronobiol Int 21:1–10

    Google Scholar 

  13. Sweeting MJ, Thompson SG, Brown LC, Powell JT, RESCAN collaborators (2012) Meta-analysis of individual patient data to examine factors affecting growth and rupture of small abdominal aortic aneurysms. Br J Surg 99:655–665

    Article  CAS  PubMed  Google Scholar 

  14. Emerging Risk Factors Collaboration (2012) Adult height and the risk of cause-specific death and vascular morbidity in 1 million people: individual participant meta-analysis. Int J Epidemiol 41:1419–1433

    Article  Google Scholar 

  15. Cañadas V, Vilacosta I, Bruna I, Fuster V (2010) Marfan syndrome. Part 1: pathophysiology and diagnosis. Nat Rev Cardiol 7:256–265

    PubMed  Google Scholar 

  16. Collaborators RESCAN, Bown MJ, Sweeting MJ, Brown LC, Powell JT, Thompson SG (2013) Surveillance intervals for small abdominal aortic aneurysms: a meta-analysis. JAMA 309:806–813

    Article  Google Scholar 

  17. Lo RC, Lu B, Fokkema MT, Conrad M, Patel VI Fillinger M, Matyal R, Schermerhorn ML, Vascular Study Group of New England (2014) Relative importance of aneurysm diameter and body size for predicting abdominal aortic aneurysm rupture in men and women. J Vasc Surg 59:1209–1216

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wild JB, Stather PW, Biancari F, Choke EC, Earnshaw JJ, Grant SW, Hafez H, Holdsworth R, Juvonen T, Lindholt J, McCollum C, Parvin S, Sayers RD, Bown MJ (2013) A multicentre observational study of the outcomes of screening detected sub-aneurysmal aortic dilatation. Eur J Vasc Endovasc Surg 45:128–134

    Article  CAS  PubMed  Google Scholar 

  19. Fillinger MF, Marra SP, Raghavan ML, Kennedy FE (2003) Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J Vasc Surg 37:724–732

    Article  PubMed  Google Scholar 

  20. Venkatasubramaniam AK, Fagan MJ, Mehta T, Mylankal KJ, Ray B, Kuhan G, Chetter IC, McCollum PT (2004) A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 28:168–176

    CAS  PubMed  Google Scholar 

  21. Truijers M, Pol JA, Schultzekool LJ, van Sterkenburg SM, Fillinger MF, Blankensteijn JD (2007) Wall stress analysis in small asymptomatic, symptomatic and ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 33:401–407

    Article  CAS  PubMed  Google Scholar 

  22. Khosla S, Morris DR, Moxon JV, Walker PJ, Gasser TC, Golledge J (2014) Meta-analysis of peak wall stress in ruptured, symptomatic and intact abdominal aortic aneurysms. Br J Surg 101:1350–1357

    Article  CAS  PubMed  Google Scholar 

  23. Van de Geest JP, Di Martino ES, Bohra A, Makaroun MS, Vorp DA (2006) A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative application. Ann N Y Acad Sci 1085:11–21

    Article  Google Scholar 

  24. Gasser TC, Nchimi A, Swedenborg J, Roy J, Sakalihasan N, Böckler D, Hyhlik-Dürr A (2014) A novel strategy to translate the biomechanical rupture risk of abdominal aortic aneurysms to their equivalent diameter risk: method and retrospective validation. Eur J Vasc Endovasc Surg 47:288–295

    Article  CAS  PubMed  Google Scholar 

  25. Erhart P, Hyhlik-Dürr A, Geisbüsch P, Kotelis D, Müller-Eschner M, Gasser TC, von Tengg-Kobligk H, Böckler D (2015) Finite element analysis in asymptomatic, symptomatic, and ruptured abdominal aortic aneurysms: in search of new rupture risk predictors. Eur J Vasc Endovasc Surg 49:239–245

    Article  CAS  PubMed  Google Scholar 

  26. Erhart P, Grond-Ginsbach C, Hakimi M, Lasitschka F, Dihlmann S, Böckler D, Hyhlik-Dürr A (2014) Finite element analysis of abdominal aortic aneurysms: predicted rupture risk correlates with aortic wall histology in individual patients. J Endovasc Ther 21:556–564

    Article  PubMed  Google Scholar 

  27. Malayeri AA, Natori S, Bahrami H, Bertoni AG, Kronmal R, Lima JA, Bluemke DA (2008) Relation of aortic wall thickness and distensibility to cardiovascular risk factors (from the Multi-Ethnic Study of Atherosclerosis [MESA]). Am J Cardiol 102:491–496

    Article  PubMed  PubMed Central  Google Scholar 

  28. Di Martino ES, Bohra A, Vande Geest JP, Gupta N, Makaroun MS, Vorp DA (2006) Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J Vasc Surg 43:570–576

    Article  PubMed  Google Scholar 

  29. Reeps C, Maier A, Pelisek J, Härtl F, Grabher-Meier V, Wall WA, Essler M, Eckstein HH, Gee MW (2013) Measuring and modeling patient-specific distributions of material properties in abdominal aortic aneurysm wall. Biomech Model Mechanobiol 12:717–733

    Article  CAS  PubMed  Google Scholar 

  30. Raut SS, Jana A, De Oliveira V, Muluk SC, Finol EA (2013) The importance of patient-specific regionally varying wall thickness in abdominal aortic aneurysm biomechanics. J Biomech Eng 135:81010

    Article  PubMed  Google Scholar 

  31. Shang EK, Nathan DP, Woo EY, Fairman RM, Wang GJ, Gorman RC, Gorman JH 3rd, Jackson BM (2015) Local wall thickness in finite element models improves prediction of abdominal aortic aneurysm growth. J Vasc Surg 61:217–223

    Article  PubMed  Google Scholar 

  32. Vorp DA, Raghavan ML, Webster MW (1998) Mechanical wall stress in abdominal aortic aneurysm: influence of diameter and asymmetry. J Vasc Surg 27:632–639

    Article  CAS  PubMed  Google Scholar 

  33. Fillinger MF, Racusin J, Baker RK, Cronenwett JL, Teutelink A, Schermerhorn ML, Zwolak RM, Powell RJ, Walsh DB, Rzucidlo EM (2004) Anatomic characteristics of ruptured abdominal aortic aneurysm on conventional CT scans: Implications for rupture risk. J Vasc Surg 39:1243–1252

    Article  PubMed  Google Scholar 

  34. Shum J, Martufi G, Di Martino E, Washington CB, Grisafi J, Muluk SC, Finol EA (2011) Quantitative assessment of abdominal aortic aneurysm geometry. Ann Biomed Eng 39:277–286

    Article  PubMed  PubMed Central  Google Scholar 

  35. Michel JB, Martin-Ventura JL, Egido J, Sakalihasan N, Treska V, Lindholt J, Allaire E, Thorsteinsdottir U, Cockerill G, Swedenborg J, FAD EU consortium (2011) Novel aspects of the pathogenesis of aneurysms of the abdominal aorta in humans. Cardiovasc Res 90:18–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vorp DA, Lee PC, Wang DH, Makaroun MS, Nemoto EM, Ogawa S, Webster MW (2001) Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J Vasc Surg 34:291–299

    Article  CAS  PubMed  Google Scholar 

  37. Kazi M, Thyberg J, Religa P, Roy J, Eriksson P, Hedin U, Swedenborg J (2003) Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J Vasc Surg 38:1283–1292

    Article  PubMed  Google Scholar 

  38. Koole D, Zandvoort HJ, Schoneveld A, Vink A, Vos JA, van den Hoogen LL, de Vries JP, Pasterkamp G, Moll FL, van Herwaarden JA (2013) Intraluminal abdominal aortic aneurysm thrombus is associated with disruption of wall integrity. J Vasc Surg 57:77–83

    Article  PubMed  Google Scholar 

  39. Carrell TW, Burnand KG, Booth NA, Humphries J, Smith A (2006) Intraluminal thrombus enhances proteolysis in abdominal aortic aneurysms. Vascular 14:9–16

    Article  PubMed  Google Scholar 

  40. Khan JA, Abdul Rahman MN, Mazari FA, Shahin Y, Smith G, Madden L, Fagan MJ, Greenman J, McCollum PT, Chetter IC (2012) Intraluminal thrombus has a selective influence on matrix metalloproteinases and their inhibitors (tissue inhibitors of matrix metalloproteinases) in the wall of abdominal aortic aneurysms. Ann Vasc Surg 26:322–329

    Article  PubMed  Google Scholar 

  41. Parr A, McCann M, Bradshaw B, Shahzad A, Buttner P, Golledge J (2011) Thrombus volume is associated with cardiovascular events and aneurysm growth in patients who have abdominal aortic aneurysms. J Vasc Surg 53:28–35

    Article  PubMed  PubMed Central  Google Scholar 

  42. Speelman L, Schurink GW, Bosboom EM, Buth J, Breeuwer M, van de Vosse FN, Jacobs MH (2010) The mechanical role of thrombus on the growth rate of an abdominal aortic aneurysm. J Vasc Surg 51:19–26

    Article  PubMed  Google Scholar 

  43. Golledge J, Iyer V, Jenkins J, Bradshaw B, Cronin O, Walker PJ (2014) Thrombus volume is similar in patients with ruptured and intact abdominal aortic aneurysms. J Vasc Surg 59:315–320

    Article  PubMed  Google Scholar 

  44. Hans SS, Jareunpoon O, Balasubramaniam M, Zelenock GB (2005) Size and location of thrombus in intact and ruptured abdominal aortic aneurysms. J Vasc Surg 41:584–588

    Article  PubMed  Google Scholar 

  45. O’Leary SA, Mulvihill JJ, Barrett HE, Kavanagh EG, Walsh MT, McGloughlin TM, Doyle BJ (2015) Determining the influence of calcification on the failure properties of abdominal aortic aneurysm (AAA) tissue. J Mech Behav Biomed Mater 42:154–167

    Article  PubMed  CAS  Google Scholar 

  46. Buijs RV, Willems TP, Tio RA, Boersma HH, Tielliu IF, Slart RH, Zeebregts CJ (2013) Calcification as a risk factor for rupture of abdominal aortic aneurysm. Eur J Vasc Endovasc Surg 46:542–548

    Article  CAS  PubMed  Google Scholar 

  47. Li ZY, U-King-Im J, Tang TY, Soh E, See TC, Gillard JH (2008) Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm. J Vasc Surg 47:928–935

    Article  PubMed  Google Scholar 

  48. Sano M, Sasaki T, Hirakawa S, Sakabe J, Ogawa M, Baba S, Zaima N, Tanaka H, Inuzuka K, Yamamoto N, Setou M, Sato K, Konno H, Unno N (2014) Lymphangiogenesis and angiogenesis in abdominal aortic aneurysm. PLoS One 9(3), e89830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zhou R et al (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225

    Article  CAS  PubMed  Google Scholar 

  50. Usui F, Shirasuna K, Kimura H, Tatsumi K, Kawashima A, Karasawa T, Yoshimura K, Aoki H, Tsutsui H, Noda T, Sagara J, Taniguchi S, Takahashi M (2015) Inflammasome activation by mitochondrial oxidative stress in macrophages leads to the development of angiotensin II-induced aortic aneurysm. Arterioscler Thromb Vasc Biol 35(1):127–36

    Article  CAS  PubMed  Google Scholar 

  51. Gurung P, Lukens JR, Kanneganti TD (2014) Mitochondria: diversity in the regulation of the NLRP3 inflammasomeTrends. Mol Med. doi:10.1016/j.molmed.2014.11.008

    Google Scholar 

  52. Airhart N, Brownstein BH, Cobb JP, Schierding W, Arif B, Ennis TL, Thompson RW, Curci JA (2014) Smooth muscle cells from abdominal aortic aneurysms are unique and can independently and synergistically degrade insoluble elastin. J Vasc Surg 60(4):1033–41

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wei Z, Wang Y, Zhang K, Liao Y, Ye P, Wu J, Wang Y, Li F, Yao Y, Zhou Y, Liu J (2014) Inhibiting the Th17/IL-17A-related inflammatory responses with digoxin confers protection against experimental abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol 34(11):2429–38

    Article  CAS  PubMed  Google Scholar 

  54. Ghigliotti G, Barisione C, Garibaldi S, Brunelli C, Palmieri D, Spinella G, Pane B, Spallarossa P, Altieri P, Fabbi P, Sambuceti G, Palombo D (2013) CD16(+) monocyte subsets are increased in large abdominal aortic aneurysms and are differentially related with circulating and cell-associated biochemical and inflammatory biomarkers. Dis Markers 34(2):131–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Paraskevas KI, Mikhailidis DP, Veith FJ (2014) 18F-fluorodeoxyglucose uptake in abdominal aortic aneurysms: a useful biomarker of AAA rupture risk. Biomed Res Int 2014:930738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Courtois A, Nusgens BV, Hustinx R, Namur G, Gomez P, Somja J, Defraigne JO, Delvenne P, Michel JB, Colige AC, Sakalihasan N (2013) 18F-FDG uptake assessed by PET/CT in abdominal aortic aneurysms is associated with cellular and molecular alterations prefacing wall deterioration and rupture. J Nucl Med 54:1740–1747

    Article  CAS  PubMed  Google Scholar 

  57. Reeps C, Essler M, Pelisek J, Seidl S, Eckstein HH, Krause BJ (2008) Increased 18F-fluorodeoxyglucose uptake in abdominal aortic aneurysms in positron emission/computed tomography is associated with inflammation, aortic wall instability, and acute symptoms. J Vasc Surg 48:417–423

    Article  PubMed  Google Scholar 

  58. Xu XY, Borghi A, Nchimi A, Leung J, Gomez P, Cheng Z, Defraigne JO, Sakalihasan N (2010) High levels of 18F-FDG uptake in aortic aneurysm wall are associated with high wall stress. Eur J Vasc Endovasc Surg 39:295–301

    Article  CAS  PubMed  Google Scholar 

  59. English SJ, Piert MR, Diaz JA et al (2015) Increased 18F-FDG uptake is predictive of rupture in a novel rat abdominal aortic aneurysm rupture model. Ann Surg 261:395–404

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kotze CW, Menezes LJ, Endozo R, Groves AM, Ell PJ, Yusuf SW (2009) Increased metabolic activity in abdominal aortic aneurysm detected by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). Eur J Vasc Endovasc Surg 38:93–99

    Article  CAS  PubMed  Google Scholar 

  61. Barwick TD, Lyons OT, Mikhaeel NG, Waltham M, O’Doherty MJ (2014) 18F-FDG PET-CT uptake is a feature of both normal diameter and aneurysmal aortic wall and is not related to aneurysm size. Eur J Nucl Med Mol Imaging 41:2310–2318

    Article  CAS  PubMed  Google Scholar 

  62. Eickelberg O, Pansky A, Mussmann R, Bihl M, Tamm M, Hildebrand P, Perruchoud AP, Roth M (1999) Transforming growth factor-beta1 induces interleukin-6 expression via activating protein-1 consisting of JunD homodimers in primary human lung fibroblasts. J Biol Chem 274(18):12933–8

    Article  CAS  PubMed  Google Scholar 

  63. Vaday GG, Schor H, Rahat MA, Lahat N, Lider O (2001) Transforming growth factor-beta suppresses tumor necrosis factor alpha-induced matrix metalloproteinase-9 expression in monocytes.J. Leukoc Biol 69(4):613–21

    CAS  Google Scholar 

  64. Topouzis S, Majesky MW (1996) Smooth muscle lineage diversity in the chick embryo. Two types of aortic smooth muscle cell differ in growth and receptor-mediated transcriptional responses to transforming growth factor-beta. Dev Biol 178:430–45

    Article  CAS  Google Scholar 

  65. Wang Y, Krishna S, Walker PJ, Norman P, Golledge J (2013) Transforming growth factor-β and abdominal aortic aneurysms. Cardiovasc Pathol 22(2):126–32. doi:10.1016/j.carpath.2012.07.005

    Article  PubMed  CAS  Google Scholar 

  66. Annes JP, Munger JS, Rifkin DB (2003) Making sense of latent TGFbeta activation. J Cell Sci 116(Pt 2):217–24, Review

    Article  CAS  PubMed  Google Scholar 

  67. Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, Myers L, Klein EC, Liu G, Calvi C, Podowski M, Neptune ER, Halushka MK, Bedja D, Gabrielson K, Rifkin DB, Carta L, Ramirez F, Huso DL, Dietz HC (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312(5770):117–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Franken R, den Hartog AW, Radonic T, Micha D, Maugeri A, van Dijk FS, Meijers-Heijboer HE, Timmermans J, Scholte AJ, van den Berg MP, Groenink M, Mulder BJ, Zwinderman AH, de Waard V, Pals G (2015) Beneficial outcome of losartan therapy depends on type of FBN1 mutation in Marfan syndrome. Circ Cardiovasc Genet 8(2):383–8. doi:10.1161/CIRCGENETICS.114.000950

    Article  CAS  PubMed  Google Scholar 

  69. Dai J, Losy F, Guinault AM, Pages C, Anegon I, Desgranges P, Becquemin JP, Allaire E (2005) Overexpression of transforming growth factor-beta1 stabilizes already-formed aortic aneurysms: a first approach to induction of functional healing by endovascular gene therapy. Circulation 112(7):1008–15

    Article  CAS  PubMed  Google Scholar 

  70. Grodin JL, Powell-Wiley TM, Ayers CR, Kumar DS, Rohatgi A, Khera A, McGuire DK, de Lemos JA, Das SR (2011) Circulating levels of matrix metalloproteinase-9 and abdominal aortic pathology: from the Dallas Heart Study. Vasc Med 16:339–345

    Article  PubMed  PubMed Central  Google Scholar 

  71. Takagi H, Manabe H, Kawai N, Goto SN, Umemoto T (2009) Circulating matrix metalloproteinase-9 concentrations and abdominal aortic aneurysm presence: a meta-analysis. Interact Cardiovasc Thorac Surg 9:437–440

    Article  PubMed  Google Scholar 

  72. Wilson WR, Anderton M, Choke EC, Dawson J, Loftus IM, Thompson MM (2008) Elevated plasma MMP1 and MMP9 are associated with abdominal aortic aneurysm rupture. Eur J Vasc Endovasc Surg 35:580–584

    Article  CAS  PubMed  Google Scholar 

  73. Wilson WR, Anderton M, Schwalbe EC, Jones JL, Furness PN, Bell PR, Thompson MM (2006) Matrix metalloproteinase-8 and −9 are increased at the site of abdominal aortic aneurysm rupture. Circulation 113:438–445

    Article  CAS  PubMed  Google Scholar 

  74. Allaire E, Forough R, Clowes M, Starcher B, Clowes AW (1998) Local overexpression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat model. J Clin Invest 102:1413–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Choke E, Thompson MM, Dawson J, Wilson WR, Sayed S, Loftus IM, Cockerill GW (2006) Abdominal aortic aneurysm rupture is associated with increased medial neovascularization and overexpression of proangiogenic cytokines. Arterioscler Thromb Vasc Biol 26:2077–2082

    Article  CAS  PubMed  Google Scholar 

  76. Van Vlijmen-Van Keulen CJ, Rauwerda JA, Pals G (2005) Genome-wide linkage in three Dutch families maps a locus for abdominal aortic aneurysms to chromosome 19q13.3. Eur J Vasc Endovasc Surg 30(1):29–35

    Article  Google Scholar 

  77. Larsson E, Granath F, Swedenborg J, Hultgren R (2009) A population-based case–control study of the familial risk of abdominal aortic aneurysm. J Vasc Surg 49(1):47–50. doi:10.1016/j.jvs.2008.08.012, discussion 51

    Article  PubMed  Google Scholar 

  78. Wahlgren CM, Larsson E, Magnusson PK, Hultgren R, Swedenborg J (2010) Genetic and environmental contributions to abdominal aortic aneurysm development in a twin population. J Vasc Surg 51(1):3–7. doi:10.1016/j.jvs.2009.08.036, discussion 7

    Article  PubMed  Google Scholar 

  79. Bridge KI, Macrae F, Bailey MA, Johnson A, Philippou H, Scott DJ, Ariёns RA (2014) The alpha-2-antiplasmin Arg407Lys polymorphism is associated with abdominal aortic aneurysm. Thromb Res 134(3):723–8. doi:10.1016/j.thromres.2014.06.019

    Article  CAS  PubMed  Google Scholar 

  80. Morris DR, Biros E, Cronin O, Kuivaniemi H, Golledge J (2014) The association of genetic variants of matrix metalloproteinases with abdominal aortic aneurysm: a systematic review and meta-analysis. Heart 100(4):295–302. doi:10.1136/heartjnl-2013-304129, Review

    Article  PubMed  Google Scholar 

  81. Li Y, Yang C, Ma G, Cui L, Gu X, Chen Y, Zhao B, Wang H (2014) Li K (2014) Analysis of ADAM17 polymorphisms and susceptibility to sporadic abdominal aortic aneurysm. Cell Physiol Biochem 33(5):1426–38. doi:10.1159/000358708

    Article  CAS  PubMed  Google Scholar 

  82. Bown MJ et al (2011) Abdominal aortic aneurysm is associated with a variant in low-density lipoprotein receptor-related protein 1. Am J Hum Genet 89(5):619–27. doi:10.1016/j.ajhg.2011.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Baas AF, Medic J, van ’t Slot R, de Kovel CG, Zhernakova A, Geelkerken RH, Kranendonk SE, van Sterkenburg SM, Grobbee DE, Boll AP, Wijmenga C, Blankensteijn JD, Ruigrok YM (2010) Association of the TGF-beta receptor genes with abdominal aortic aneurysm. Eur J Hum Genet 18(2):240–4. doi:10.1038/ejhg.2009.141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Duellman T, Warren CL, Matsumura J, Yang J (2014) Analysis of multiple genetic polymorphisms in aggressive-growing and slow-growing abdominal aortic aneurysms. J Vasc Surg 60(3):613–21.e3. doi:10.1016/j.jvs.2014.03.274

    Article  PubMed  PubMed Central  Google Scholar 

  85. Laukkanen MO, Mannermaa S, Hiltunen MO et al (1999) Local hypomethylation in atherosclerosis found in rabbit ec-sod gene. Arterioscler Thromb Vasc Biol 19(9):2171–8

    Article  CAS  PubMed  Google Scholar 

  86. Turunen MP, Aavik E, Ylä-Herttuala S (2009) Epigenetics and atherosclerosis. Biochim Biophys Acta 1790(9):886–91

    Article  CAS  PubMed  Google Scholar 

  87. Krishna SM, Dear A, Craig JM, Norman PE, Golledge J (2013) The potential role of homocysteine mediated DNA methylation and associated epigenetic changes in abdominal aortic aneurysm formation. Atherosclerosis 228(2):295–305. doi:10.1016/j.atherosclerosis.2013.02.019

    Article  CAS  PubMed  Google Scholar 

  88. Sato N, Maehara N, Su GH, Goggins M (2003) Effects of 5-aza-2_-deoxycytidine on matrix metalloproteinase expression and pancreatic cancer cell invasiveness. J Natl Cancer Inst 95(4):327–30

    Article  CAS  PubMed  Google Scholar 

  89. Liu C, Xu D, Sjoberg J et al (2004) Transcriptional regulation of 15-lipoxygenase expression by promoter methylation. Exp Cell Res 297(1):61–7

    Article  CAS  PubMed  Google Scholar 

  90. Lin XH, Guo C, Gu LJ, Deuel TF (1993) Site-specific methylation inhibits transcriptional activity of platelet-derived growth factor A-chain promoter. J Biol Chem 268(23):17334–40

    CAS  PubMed  Google Scholar 

  91. Osada H, Tatematsu Y, Sugito N, Horio Y, Takahashi T (2005) Histone modification in the TGF-beta-RII gene promoter and its significance for responsiveness to HDAC inhibitor in lung cancer cell lines. Mol Carcinog 44(4):233–41

    Article  CAS  PubMed  Google Scholar 

  92. Massagué J, Wotton D (2000) Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19:1745–1754

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gomez D, Kessler K, Michel JB, Vranckx R (2013) Modifications of chromatin dynamics control Smad2 pathway activation in aneurysmal smooth muscle cells. Circ Res 113(7):881–90. doi:10.1161/CIRCRESAHA.113.301989

    Article  CAS  PubMed  Google Scholar 

  94. Gomez D, Coyet A, Ollivier V, Jeunemaitre X, Jondeau G, Michel JB, Vranckx R (2011) Epigenetic control of vascular smooth muscle cells in Marfan and non-Marfan thoracic aortic aneurysms. Cardiovasc Res 89:446–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li Y, Chu JS, Kurpinski K, Li X, Bautista DM, Yang L, Sung KL, Li S (2011) Biophysical regulation of histone acetylation in mesenchymal stem cells. Biophys J 100:1902–1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vishnubalaji R, Hamam R, Abdulla MH, Mohammed MA, Kassem M, Al-Obeed O, Aldahmash A, Alajez NM (2015) Genome-wide mRNA and miRNA expression profiling reveal multiple regulatory networks in colorectal cancer. Cell Death Dis 6:e1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Permuth-Wey J, Chen YA et al (2015) A genome-wide investigation of microRNA expression identifies biologically-meaningful MicroRNAs that distinguish between high-risk and Low-risk intraductal papillary mucinous neoplasms of the pancreas. PLoS One 10(1), e0116869. doi:10.1371/journal.pone.0116869, eCollection 2015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Murakami Y, Tanahashi T, Okada R, Toyoda H, Kumada T, Enomoto M, Tamori A, Kawada N, Taguchi YH, Azuma T (2014) Comparison of hepatocellular carcinoma miRNA expression profiling as evaluated by next generation sequencing and microarray. PLoS One 9(9), e106314. doi:10.1371/journal.pone.0106314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Gupta A, Nagilla P, Le HS, Bunney C, Zych C, Thalamuthu A, Bar-Joseph Z, Mathavan S, Ayyavoo V (2011) Comparative expression profile of miRNA and mRNA in primary peripheral blood mononuclear cells infected with human immunodeficiency virus (HIV-1). PLoS One 6(7):e22730. doi:10.1371/journal.pone.0022730, Retraction in: PLoS One. 2012;7(8)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bruni R, Marcantonio C, Tritarelli E, Tataseo P, Stellacci E, Costantino A, Villano U, Battistini A, Ciccaglione AR (2011) An integrated approach identifies IFN-regulated microRNAs and targeted mRNAs modulated by different HCV replicon clones. BMC Genomics 12:485. doi:10.1186/1471-2164-12-485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kin K, Miyagawa S, Fukushima S, Shirakawa Y, Torikai K, Shimamura K, Daimon T, Kawahara Y, Kuratani T, Sawa Y (2012) Tissue- and plasma-specific microRNA signatures for atherosclerotic abdominal aortic aneurysm. J Am Heart Assoc 1(5), e000745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Ikonomidis JS, Ivey CR, Wheeler JB, Akerman AW, Rice A, Patel RK, Stroud RE, Shah AA, Hughes CG, Ferrari G, Mukherjee R, Jones JA (2013) Plasma biomarkers for distinguishing etiologic subtypes of thoracic aortic aneurysm disease. J Thorac Cardiovasc Surg 145(5):1326–33. doi:10.1016/j.jtcvs.2012.12.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Maegdefessel L, Azuma J, Toh R, Merk DR, Deng A, Chin JT, Raaz U, Schoelmerich AM, Raiesdana A, Leeper NJ, McConnell MV, Dalman RL, Spin JM, Tsao PS (2012) Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development. J Clin Invest 122(2):497–506. doi:10.1172/JCI61598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gokani VJ, Sidloff D, Bath MF, Bown MJ, Sayers RD, Choke E (2015) A retrospective study: factors associated with the risk of abdominal aortic aneurysm rupture. Vasc Pharmacol 65–66:13–16

    Article  CAS  Google Scholar 

  106. Wang Y, Ait-Oufella H, Herbin O, Bonnin P, Ramkhelawon B, Taleb S, Huang J, Offenstadt G, Combadière C, Rénia L, Johnson JL, Tharaux PL, Tedgui A, Mallat Z (2010) TGF-beta activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice. J Clin Invest 120(2):422–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease andprospects for epigenetic therapy. Nature 429(6990):457–63

    Article  CAS  PubMed  Google Scholar 

  108. Pons D, Jukema JW (2008) Epigenetic histone acetylation modifiers in vascular remodelling—new targets for therapy in cardiovascular disease. Neth Heart J 16(1):30–2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lovren F, Pan Y, Quan A, Singh KK, Shukla PC, Gupta N, Steer BM, Ingram AJ, Gupta M, Al-Omran M, Teoh H, Marsden PA, Verma S (2012) MicroRNA-145 targeted therapy reduces atherosclerosis. Circulation 126(11 Suppl 1):S81–90

    Article  CAS  PubMed  Google Scholar 

  110. Erfle H, Pashayeva K, Harder N, Zhang L, Rohr K, Schadendorf D, Ugurel S, Keese M (2015) Targeting mitosis-regulating genes in cisplatin-sensitive and -resistant melanoma cells: a live-cell RNAi screen displays differential nucleus-derived phenotypes. Biotechnol J 10(9):1467–77. doi:10.1002/biot.201400501

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schmitz-Rixen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitz-Rixen, T., Keese, M., Hakimi, M. et al. Ruptured abdominal aortic aneurysm—epidemiology, predisposing factors, and biology. Langenbecks Arch Surg 401, 275–288 (2016). https://doi.org/10.1007/s00423-016-1401-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-016-1401-8

Keywords

Navigation