Skip to main content

Advertisement

Log in

Deficiency of the oxygen sensor PHD1 augments liver regeneration after partial hepatectomy

  • Original Article
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Purpose

Liver regeneration after partial hepatectomy (PH) occurs in conditions of reduced oxygen supply. HIF prolyl hydroxylase enzymes (PHD1, PHD2, and PHD3) are oxygen sensors involved in adaptive response to hypoxia. Specific functions of these PHD enzymes in liver regeneration have, however, remained enigmatic. Here, we investigated the significance of PHD1 in liver regeneration following hepatectomy.

Methods

Liver regeneration was studied in PHD1-deficient (PHD1−/−) and wild type (WT) mice subjected to 80 % hepatectomy. For in vitro analyses, hepatocytes were isolated from PHD1−/− and WT livers. Cell cycle progression was studied via FACS-based analysis of nuclear DNA profile. Transcription factor binding assays, qRT-PCR, and immunoblotting were applied to study the relevance of PHD1 downstream effectors during liver regeneration.

Results

Liver regeneration was significantly enhanced in PHD1−/− mice compared to WT littermates. This effect was due to enhanced proliferation rather than to hypertrophy of liver cells. Cell cycle progression was significantly enhanced, and transcriptional activity of the cell cycle regulator c-Myc was increased in PHD1-deficient hepatocytes. These changes coincided with increased expression of cyclin D2, a cell cycle-promoting c-Myc target, and decreased expression of the cell cycle-delaying c-Myc target p21.

Conclusions

Loss of PHD1 enhances liver regeneration by boosting hepatocyte proliferation in a c-Myc-dependent fashion. PHD1 might, therefore, represent a potential target to facilitate liver regeneration after surgical resection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Poon RT, Fan ST, Lo CM et al (2004) Improving perioperative outcome expands the role of hepatectomy in management of benign and malignant hepatobiliary diseases: analysis of 1222 consecutive patients from a prospective database. Ann Surg 240(4):698–708, discussion 708-610

    PubMed  Google Scholar 

  2. Reissfelder C, Rahbari NN, Koch M et al (2011) Postoperative course and clinical significance of biochemical blood tests following hepatic resection. Br J Surg 98(6):836–844

    Article  PubMed  CAS  Google Scholar 

  3. Rahbari NN, Reissfelder C, Koch M, Elbers H, Striebel F, Buchler MW, Weitz J (2011) The predictive value of postoperative clinical risk scores for outcome after hepatic resection: a validation analysis in 807 patients. Ann Surg Oncol 18(13):3640–3649

    Article  PubMed  Google Scholar 

  4. Kubota K, Makuuchi M, Kusaka K et al (1997) Measurement of liver volume and hepatic functional reserve as a guide to decision-making in resectional surgery for hepatic tumors. Hepatology 26(5):1176–1181

    PubMed  CAS  Google Scholar 

  5. Hammond JS, Guha IN, Beckingham IJ, Lobo DN (2011) Prediction, prevention and management of postresection liver failure. Br J Surg 98(9):1188–1200

    Article  PubMed  CAS  Google Scholar 

  6. Michalopoulos GK (2007) Liver regeneration. J Cell Physiol 213(2):286–300

    Article  PubMed  CAS  Google Scholar 

  7. Abshagen K, Eipel C, Vollmar B (2012) A critical appraisal of the hemodynamic signal driving liver regeneration. Langenbecks Arch Surg 397(4):579–590

    Article  PubMed  Google Scholar 

  8. Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30(4):393–402

    Article  PubMed  CAS  Google Scholar 

  9. Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiol (Bethesda) 24:97–106

    Article  CAS  Google Scholar 

  10. Maeno H, Ono T, Dhar DK, Sato T, Yamanoi A, Nagasue N (2005) Expression of hypoxia inducible factor-1alpha during liver regeneration induced by partial hepatectomy in rats. Liver Int 25(5):1002–1009

    Article  PubMed  CAS  Google Scholar 

  11. Schmeding M, Boas-Knoop S, Lippert S et al (2008) Erythropoietin promotes hepatic regeneration after extended liver resection in rats. J Gastroenterol Hepatol 23(7 Pt 1):1125–1131

    Article  PubMed  CAS  Google Scholar 

  12. Rankin EB, Rha J, Selak MA, Unger TL, Keith B, Liu Q, Haase VH (2009) Hypoxia-inducible factor 2 regulates hepatic lipid metabolism. Mol Cell Biol 29(16):4527–4538

    Article  PubMed  CAS  Google Scholar 

  13. Tajima T, Goda N, Fujiki N et al (2009) HIF-1alpha is necessary to support gluconeogenesis during liver regeneration. Biochem Biophys Res Commun 387(4):789–794

    Article  PubMed  CAS  Google Scholar 

  14. Nishiyama Y, Goda N, Kanai M et al (2012) HIF-1alpha induction suppresses excessive lipid accumulation in alcoholic fatty liver in mice. J Hepatol 56(2):441–447

    Article  PubMed  CAS  Google Scholar 

  15. Kim WY, Safran M, Buckley MR et al (2006) Failure to prolyl hydroxylate hypoxia-inducible factor alpha phenocopies VHL inactivation in vivo. EMBO J 25(19):4650–4662

    Article  PubMed  CAS  Google Scholar 

  16. Yoon D, Okhotin DV, Kim B et al (2010) Increased size of solid organs in patients with Chuvash polycythemia and in mice with altered expression of HIF-1alpha and HIF-2alpha. J Mol Med (Berl) 88(5):523–530

    Article  CAS  Google Scholar 

  17. Minamishima YA, Kaelin WG Jr (2010) Reactivation of hepatic EPO synthesis in mice after PHD loss. Science 329(5990):407

    Article  PubMed  CAS  Google Scholar 

  18. Fraisl P, Aragones J, Carmeliet P (2009) Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat Rev Drug Discov 8(2):139–152

    Article  PubMed  CAS  Google Scholar 

  19. Kiss J, Kirchberg J, Schneider M (2012) Molecular oxygen sensing: implications for visceral surgery. Langenbecks Arch Surg 397(4):603–610

    Article  PubMed  Google Scholar 

  20. Schneider M, Van Geyte K, Fraisl P et al (2010) Loss or silencing of the PHD1 prolyl hydroxylase protects livers of mice against ischemia/reperfusion injury. Gastroenterology 138(3):1143–1154, e1141-1142

    Article  PubMed  CAS  Google Scholar 

  21. Zhong Z, Ramshesh VK, Rehman H et al (2008) Activation of the oxygen-sensing signal cascade prevents mitochondrial injury after mouse liver ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol 295(4):G823–832

    Article  PubMed  CAS  Google Scholar 

  22. Bishop T, Gallagher D, Pascual A et al (2008) Abnormal sympathoadrenal development and systemic hypotension in PHD3−/− mice. Mol Cell Biol 28(10):3386–3400

    Article  PubMed  CAS  Google Scholar 

  23. Mazzone M, Dettori D, Leite de Oliveira R et al (2009) Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136(5):839–851

    Article  PubMed  CAS  Google Scholar 

  24. Greene AK, Puder M (2003) Partial hepatectomy in the mouse: technique and perioperative management. J Investig Surg 16(2):99–102

    Google Scholar 

  25. Dirkx R, Meyhi E, Asselberghs S, Reddy J, Baes M, Van Veldhoven PP (2007) Beta-oxidation in hepatocyte cultures from mice with peroxisomal gene knockouts. Biochem Biophys Res Commun 357(3):718–723

    Article  PubMed  CAS  Google Scholar 

  26. Mancone C, Conti B, Amicone L et al (2010) Proteomic analysis reveals a major role for contact inhibition in the terminal differentiation of hepatocytes. J Hepatol 52(2):234–243

    Article  PubMed  CAS  Google Scholar 

  27. Walmsley SR, Chilvers ER, Thompson AA et al (2011) Prolyl hydroxylase 3 (PHD3) is essential for hypoxic regulation of neutrophilic inflammation in humans and mice. J Clin Investig 121(3):1053–1063

    Article  PubMed  CAS  Google Scholar 

  28. Kiss J, Mollenhauer M, Walmsley SR et al (2012) Loss of the oxygen sensor PHD3 enhances the innate immune response to abdominal sepsis. J Immunol 189(4):1955–1965

    Article  PubMed  CAS  Google Scholar 

  29. Takeda Y, Costa S, Delamarre E et al (2011) Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis. Nature 479(7371):122–126

    Article  PubMed  CAS  Google Scholar 

  30. Malato Y, Sander LE, Liedtke C, Al-Masaoudi M, Tacke F, Trautwein C, Beraza N (2008) Hepatocyte-specific inhibitor-of-kappaB-kinase deletion triggers the innate immune response and promotes earlier cell proliferation during liver regeneration. Hepatology 47(6):2036–2050

    Article  PubMed  CAS  Google Scholar 

  31. Wu JC, Merlino G, Fausto N (1994) Establishment and characterization of differentiated, nontransformed hepatocyte cell lines derived from mice transgenic for transforming growth factor alpha. Proc Natl Acad Sci USA 91(2):674–678

    Article  PubMed  CAS  Google Scholar 

  32. Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC (2007) HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11(4):335–347

    Article  PubMed  CAS  Google Scholar 

  33. Kountouras J, Boura P, Lygidakis NJ (2001) Liver regeneration after hepatectomy. Hepatogastroenterology 48(38):556–562

    PubMed  CAS  Google Scholar 

  34. Harun N, Nikfarjam M, Muralidharan V, Christophi C (2007) Liver regeneration stimulates tumor metastases. J Surg Res 138(2):284–290

    Article  PubMed  Google Scholar 

  35. Christophi C, Harun N, Fifis T (2008) Liver regeneration and tumor stimulation—a review of cytokine and angiogenic factors. J Gastrointest Surg 12(5):966–980

    Article  PubMed  Google Scholar 

  36. Gordan JD, Thompson CB, Simon MC (2007) HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12(2):108–113

    Article  PubMed  CAS  Google Scholar 

  37. Baena E, Gandarillas A, Vallespinos M et al (2005) c-Myc regulates cell size and ploidy but is not essential for postnatal proliferation in liver. Proc Natl Acad Sci USA 102(20):7286–7291

    Article  PubMed  CAS  Google Scholar 

  38. Hurlin PJ, Huang J (2006) The MAX-interacting transcription factor network. Semin Cancer Biol 16(4):265–274

    Article  PubMed  CAS  Google Scholar 

  39. Huang LE (2008) Carrot and stick: HIF-alpha engages c-Myc in hypoxic adaptation. Cell Death Differ 15(4):672–677

    Article  PubMed  CAS  Google Scholar 

  40. Fernandez PC, Frank SR, Wang L et al (2003) Genomic targets of the human c-Myc protein. Genes Dev 17(9):1115–1129

    Article  PubMed  CAS  Google Scholar 

  41. Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC, Huang LE (2004) HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J 23(9):1949–1956

    Article  PubMed  CAS  Google Scholar 

  42. Koshiji M, To KK, Hammer S, Kumamoto K, Harris AL, Modrich P, Huang LE (2005) HIF-1alpha induces genetic instability by transcriptionally downregulating MutSalpha expression. Mol Cell 17(6):793–803

    Article  PubMed  CAS  Google Scholar 

  43. Khan Z, Michalopoulos GK, Stolz DB (2006) Peroxisomal localization of hypoxia-inducible factors and hypoxia-inducible factor regulatory hydroxylases in primary rat hepatocytes exposed to hypoxia–reoxygenation. Am J Pathol 169(4):1251–1269

    Article  PubMed  CAS  Google Scholar 

  44. Rankin EB, Biju MP, Liu QD et al (2007) Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J Clin Invest 117(4):1068–1077

    Article  PubMed  CAS  Google Scholar 

  45. Rankin EB, Rha J, Unger TL et al (2008) Hypoxia-inducible factor-2 regulates vascular tumorigenesis in mice. Oncogene 27(40):5354–5358

    Article  PubMed  CAS  Google Scholar 

  46. Klemm K, Eipel C, Cantre D, Abshagen K, Menger MD, Vollmar B (2008) Multiple doses of erythropoietin impair liver regeneration by increasing TNF-alpha, the Bax to Bcl-xL ratio and apoptotic cell death. PLoS One 3(12):e3924

    Article  PubMed  Google Scholar 

  47. Aragones J, Schneider M, Van Geyte K et al (2008) Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat Genet 40(2):170–180

    Article  PubMed  CAS  Google Scholar 

  48. Goralczyk AD, Obed A, Beham A, Tsui TY, Lorf T (2011) Posterior cavoplasty: a new approach to avoid venous outflow obstruction and symptoms for small-for-size syndrome in right lobe living donor liver transplantation. Langenbecks Arch Surg 396(3):389–395

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Emmy Noether Program of the Deutsche Forschungsgemeinschaft (DFG; Grant 947/2-1 to M.S.) and in the framework of the Clinical Research Group KFO 227 by the DFG (Grant 947/4-1 to M.S.).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schneider.

Additional information

Martin Mollenhauer and Judit Kiss contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 135 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mollenhauer, M., Kiss, J., Dudda, J. et al. Deficiency of the oxygen sensor PHD1 augments liver regeneration after partial hepatectomy. Langenbecks Arch Surg 397, 1313–1322 (2012). https://doi.org/10.1007/s00423-012-0998-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-012-0998-5

Keywords

Navigation