Skip to main content

Advertisement

Log in

Angiogenesis in cancer: molecular mechanisms, clinical impact

  • New Surgical Horizons
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Background

Angiogenesis, the formation of new blood vessels from the endothelium of the existing vasculature, is fundamental in tumor growth, progression, and metastasis. Inhibiting tumor angiogenesis is a promising strategy for treatment of cancer and has been successfully transferred from preclinical to clinical application in recent years. Whereas conventional therapeutic approaches, e.g. chemotherapy and radiation, are focussing on tumor cells, antiangiogenic therapy is directed against the tumor supplying blood vessels.

Materials and methods

This review will summarize important molecular mechanisms of tumor angiogenesis and advances in the design of antiangiogenic drugs. Furthermore, clinical implications of antiangiogenic therapy in surgical oncology will be discussed.

Results

First antiangiogenic drugs have been approved for treatment of advanced solid tumors in several countries. Leading antiangiogenic drugs are designed to inhibit vascular endothelial growth factor-mediated tumor angiogenesis. Combining antiangiogenic agents with conventional chemotherapy or radiation is currently investigated clinically with great emphasis to realize a multimodal tumor therapy, targeting both the tumor cell and tumor vascular compartment.

Conclusion

Antiangiogenic tumor therapy represents a promising strategy for treatment of cancer and will most likely exhibit its clinical potential in combination with established standard tumor therapies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–6

    Article  PubMed  CAS  Google Scholar 

  2. Algire GH, Chalkley HW (1945) Vascular reactions of normal and malignant tissue in vivo. J Natl Cancer Inst 6:73–85

    Google Scholar 

  3. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  4. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    Article  PubMed  CAS  Google Scholar 

  5. Folkman J, Kalluri R (2004) Cancer without disease. Nature 427:787

    Article  PubMed  CAS  Google Scholar 

  6. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  PubMed  CAS  Google Scholar 

  7. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974

    Article  PubMed  CAS  Google Scholar 

  8. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315–328

    Article  PubMed  CAS  Google Scholar 

  9. Pinedo HM, Verheul HM, D’Amato RJ, Folkman J (1998) Involvement of platelets in tumour angiogenesis? Lancet 352:1775–1777

    Article  PubMed  CAS  Google Scholar 

  10. Browder T, Folkman J, Pirie-Shepherd S (2000) The hemostatic system as a regulator of angiogenesis. J Biol Chem 275:1521–1524

    Article  PubMed  CAS  Google Scholar 

  11. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309

    Article  PubMed  CAS  Google Scholar 

  12. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  PubMed  CAS  Google Scholar 

  13. Bielenberg DR, Pettaway CA, Takashima S, Klagsbrun M (2006) Neuropilins in neoplasms: expression, regulation, and function. Exp Cell Res 312:584–593

    Article  PubMed  CAS  Google Scholar 

  14. Plank MJ, Sleeman BD, Jones PF (2004) The role of the angiopoietins in tumour angiogenesis. Growth Factors 22:1–11

    Article  PubMed  CAS  Google Scholar 

  15. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    Article  PubMed  CAS  Google Scholar 

  16. Szebenyi G, Fallon JF (1999) Fibroblast growth factors as multifunctional signaling factors. Int Rev Cytol 185:45–106

    PubMed  CAS  Google Scholar 

  17. Tonini T, Rossi F, Claudio PP (2003) Molecular basis of angiogenesis and cancer. Oncogene 22:6549–6556

    Article  PubMed  CAS  Google Scholar 

  18. Sargiannidou I, Zhou J, Tuszynski GP (2001) The role of thrombospondin-1 in tumor progression. Exp Biol Med (Maywood) 226:726–733

    CAS  Google Scholar 

  19. Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2:727–739

    Article  PubMed  CAS  Google Scholar 

  20. Kleespies A, Guba M, Jauch KW, Bruns CJ (2004) Vascular endothelial growth factor in esophageal cancer. J Surg Oncol 87:95–104

    Article  PubMed  CAS  Google Scholar 

  21. Guba M, Seeliger H, Kleespies A, Jauch KW, Bruns C (2004) Vascular endothelial growth factor in colorectal cancer. Int J Colorectal Dis 19:510–517

    Article  PubMed  Google Scholar 

  22. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362:841–844

    Article  PubMed  CAS  Google Scholar 

  23. Warren RS, Yuan H, Matli MR, Gillett NA, Ferrara N (1995) Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest 95:1789–1797

    Article  PubMed  CAS  Google Scholar 

  24. Fernando NH, Hurwitz HI (2003) Inhibition of vascular endothelial growth factor in the treatment of colorectal cancer. Semin Oncol 30:39–50

    PubMed  CAS  Google Scholar 

  25. Prewett M, Huber J, Li Y, Santiago A, O’Connor W, King K, Overholser J, Hooper A, Pytowski B, Witte L, Bohlen P, Hicklin DJ (1999) Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res 59:5209–5218

    PubMed  CAS  Google Scholar 

  26. Posey JA, Ng TC, Yang B, Khazaeli MB, Carpenter MD, Fox F, Needle M, Waksal H, LoBuglio AF (2003) A phase I study of anti-kinase insert domain-containing receptor antibody, IMC-1C11, in patients with liver metastases from colorectal carcinoma. Clin Cancer Res 9:1323–1332

    PubMed  CAS  Google Scholar 

  27. Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, Boland P, Leidich R, Hylton D, Burova E, Ioffe E, Huang T et al (2002) VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci 99:11393–11398

    Article  PubMed  CAS  Google Scholar 

  28. Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287–1295

    Article  PubMed  CAS  Google Scholar 

  29. Cabebe E, Wakelee H (2006) Sunitinib: a newly approved small-molecule inhibitor of angiogenesis. Drugs Today (Barc) 42:387–398

    Article  CAS  Google Scholar 

  30. Hahn O, Stadler W (2006) Sorafenib. Curr Opin Oncol 18:615–621

    Article  PubMed  CAS  Google Scholar 

  31. Longo R, Sarmiento R, Fanelli M, Capaccetti B, Gattuso D, Gasparini G (2002) Anti-angiogenic therapy: rationale, challenges and clinical studies. Angiogenesis 5:237–256

    Article  PubMed  CAS  Google Scholar 

  32. Overall CM, Kleifeld O (2006) Towards third generation matrix metalloproteinase inhibitors for cancer therapy. Br J Cancer 94:941–946

    Article  PubMed  CAS  Google Scholar 

  33. Smith JW (2003) Cilengitide Merck. Curr Opin Investig Drugs 4:741–745

    PubMed  CAS  Google Scholar 

  34. Guba M, Yezhelyev M, Eichhorn ME, Schmid G, Ischenko I, Papyan A, Graeb C, Seeliger H, Geissler EK, Jauch KW, Bruns CJ (2005) Rapamycin induces tumor-specific thrombosis via tissue factor in the presence of VEGF. Blood 105:4463–4469

    Article  PubMed  CAS  Google Scholar 

  35. Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, Bruns CJ, Zuelke C, Farkas S, Anthuber M, Jauch KW, Geissler EK (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8:128–135

    Article  PubMed  CAS  Google Scholar 

  36. Motzer RJ, Michaelson MD, Redman BG, Hudes GR, Wilding G, Figlin RA, Ginsberg MS, Kim ST, Baum CM, DePrimo SE, Li JZ, Bello CL et al (2006) Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 24:16–24

    Article  PubMed  CAS  Google Scholar 

  37. Giantonio B, Catalano PJ, Meropol NJ et al (2005) High-dose bevacizumab in combination with FOLFOX-4 improves survival in patients with previously treated advanced colorectal cancer: results from the Eastern Cooperative Group (ECOG) study E2300. J Clin Oncol 23(16S):2

    Google Scholar 

  38. Kerbel RS (2006) Antiangiogenic therapy: a universal chemosensitization strategy for cancer? Science 312:1171–1175

    Article  PubMed  CAS  Google Scholar 

  39. Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989

    Article  PubMed  CAS  Google Scholar 

  40. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  PubMed  CAS  Google Scholar 

  41. Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, Xu L, Hicklin DJ, Fukumura D, di Tomaso E, Munn LL, Jain RK (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563

    PubMed  CAS  Google Scholar 

  42. Webb T (2005) Vascular normalization: study examines how antiangiogenesis therapies work. J Natl Cancer Inst 97:336–337

    Article  PubMed  Google Scholar 

  43. Willett CG, Boucher Y, Di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, Mino M, Cohen KS et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145–147

    Article  PubMed  CAS  Google Scholar 

  44. Hudis CA (2005) Clinical implications of antiangiogenic therapies. Oncology (Willist Park N Y) 19:26–31

    Google Scholar 

  45. Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O’Reilly MS, Folkman J (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60:1878–1886

    PubMed  CAS  Google Scholar 

  46. Belotti D, Vergani V, Drudis T, Borsotti P, Pitelli MR, Viale G, Giavazzi R, Taraboletti G (1996) The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin Cancer Res 2:1843–1849

    PubMed  CAS  Google Scholar 

  47. O’Leary JJ, Shapiro RL, Ren CJ, Chuang N, Cohen HW, Potmesil M (1999) Antiangiogenic effects of camptothecin analogues 9-amino-20(S)-camptothecin, topotecan, and CPT-11 studied in the mouse cornea model. Clin Cancer Res 5:181–187

    PubMed  CAS  Google Scholar 

  48. Kerbel RS, Kamen BA (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4:423–436

    Article  PubMed  CAS  Google Scholar 

  49. Kerbel RS, Klement G, Pritchard KI, Kamen B (2002) Continuous low-dose anti-angiogenic/metronomic chemotherapy: from the research laboratory into the oncology clinic. Ann Oncol 13:12–15

    Article  PubMed  CAS  Google Scholar 

  50. Bottini A, Generali D, Brizzi MP, Fox SB, Bersiga A, Bonardi S, Allevi G, Aguggini S, Bodini G, Milani M, Dionisio R, Bernardi C et al (2006) Randomized phase II trial of letrozole and letrozole plus low-dose metronomic oral cyclophosphamide as primary systemic treatment in elderly breast cancer patients. J Clin Oncol 24:3623–3628

    Article  PubMed  CAS  Google Scholar 

  51. Young SD, Whissell M, Noble JC, Cano PO, Lopez PG, Germond CJ (2006) Phase II clinical trial results involving treatment with low-dose daily oral cyclophosphamide, weekly vinblastine, and rofecoxib in patients with advanced solid tumors. Clin Cancer Res 12:3092–3098

    Article  PubMed  CAS  Google Scholar 

  52. Scappaticci FA, Fehrenbacher L, Cartwright T, Hainsworth JD, Heim W, Berlin J, Kabbinavar F, Novotny W, Sarkar S, Hurwitz H (2005) Surgical wound healing complications in metastatic colorectal cancer patients treated with bevacizumab. J Surg Oncol 91:173–180

    Article  PubMed  CAS  Google Scholar 

  53. Gruenberger T, Gruenberger B, Scheithauer W (2006) Neoadjuvant therapy with bevacizumab. J Clin Oncol 24:2592–2593

    Article  PubMed  Google Scholar 

  54. Shimizu H, Mitsuhashi N, Ohtsuka M, Ito H, Kimura F, Ambiru S, Togawa A, Yoshidome H, Kato A, Miyazaki M (2005) Vascular endothelial growth factor and angiopoietins regulate sinusoidal regeneration and remodeling after partial hepatectomy in rats. World J Gastroenterol 11:7254–7260

    PubMed  CAS  Google Scholar 

  55. Ellis LM, Curley SA, Grothey A (2005) Surgical resection after downsizing of colorectal liver metastasis in the era of bevacizumab. J Clin Oncol 23:4853–4855

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank C. Conrad and M. Dellian for helpful suggestions and critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Bruns.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichhorn, M.E., Kleespies, A., Angele, M.K. et al. Angiogenesis in cancer: molecular mechanisms, clinical impact. Langenbecks Arch Surg 392, 371–379 (2007). https://doi.org/10.1007/s00423-007-0150-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-007-0150-0

Keywords

Navigation