Skip to main content
Log in

Modeling of the neural mechanism underlying the terrestrial turning of the salamander

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In order to explore the neural mechanism underlying salamander terrestrial turning, an improved biomechanical model is proposed by modifying the forelimb structure of the existing biomechanical model. Based on the proposed improved biomechanical model, a new spinal locomotor network model is constructed which contains the interneuron networks and motoneuron pool. Control methods are also developed for the new model which increase its transient response speed, control the initial swing order of the forelimbs, and generate different walking turning gait and turning on the spot (turning without moving forward). The simulation results show that the biomechanical model controlled by the new spinal locomotor network model can generate different walking turning and turning on the spot, and can control posture and the initial swing order of the forelimbs. Moreover, the transient response speed of the proposed model is very rapid. This paper thus provides a useful tool for exploring the operational mechanism of the spinal circuitry of the salamander. In addition, the research results presented here may inspire the construction of artificial spinal control networks for bionic robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ampatzis K, Song J, Ausborn J, Manira AEI (2013) Pattern of innervation and recruitment of different classes of motoneurons in adult zebrafish. J Neurosci 33(26):10875–10886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ampatzis K, Song J, Ausborn J, Manira AEI (2014) Separate microcircuit modules of distinct V2a interneurons and motoneurons control the speed of locomotion. Neuron 83(4):934–943

    Article  CAS  PubMed  Google Scholar 

  • Ashley-Ross MA (1994) Hindlimb kinematics during terrestrial locomotion in a salamander (Dicamptodon tenebrosus). J Exp Biol 193(1):255–283

    CAS  PubMed  Google Scholar 

  • Bem T, Cagelguen J-M, Ekeberg Ö, Grillner S (2003) From swimming to walking: a single basic network for two different behaviors. Biol Cybern 88(2):79–90

    Article  PubMed  Google Scholar 

  • Bicanski A, Ryczko D, Cabelguen J-M, Ijspeert AJ (2013a) From lamprey to salamander: an exploratory modeling study on the architecture of the spinal locomotor networks in the salamander. Biol Cybern 107(5):565–587

    Article  PubMed  Google Scholar 

  • Bicanski A, Ryczko D, Knuesel J, Harischandra N et al (2013b) Decoding the mechanisms of gait generation in salamanders by combining neurobiology, modeling and robotics. Biol Cybern 107(5):545–564

    Article  PubMed  Google Scholar 

  • Bizzi E, Cheung V, d’Avella A et al (2008) Combining modules for movements. Brain Res Rev 57(1):125–133

    Article  CAS  PubMed  Google Scholar 

  • Bolt JR (1969) Lissamphibians origins: possible protolissamphibian from the Lower Permian of Oklahoma. Science 166(3907):888–891

    Article  CAS  PubMed  Google Scholar 

  • Bolt JR (1977) Dissorophoid relationships and ontogeny and the origin of Lissamphibia. J. Paleont 51(2):235–249

    Google Scholar 

  • Cabelguen J-M, Ijspeert A, Lamarque S, Ryczko D (2010) Axial dynamics during locomotion in vertebrates: lesson from the salamander. Prog Brain Res 187:149–162

    Article  PubMed  Google Scholar 

  • Chevallier S, Ijspeert AJ, Ryczko D, Nagy F et al (2008) Organization of the spinal central pattern generators for locomotion in the salamander: biology and modeling. Brain Res Rev 57(1):147–161

    Article  PubMed  Google Scholar 

  • d’Avella A, Saltiel P, Bizzi E (2003) Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci 6(3):300–308

    Article  PubMed  Google Scholar 

  • Degallier S, Ijspeert A (2010) Modeling discrete and rhythmic movements through motor primitives: a review. Biol Cybern 103(4):319–338

    Article  PubMed  Google Scholar 

  • Ekeberg Ö (1993) A combined neuronal and mechanical model of fish swimming. Biol Cybern 69(5):363–374

    Article  Google Scholar 

  • Endo T, Kiehn O (2008) Asymmetric operation of the locomotor central pattern generator in the neonatal mouse spinal cord. J Neurophysiol 100:3043–3054

    Article  PubMed  PubMed Central  Google Scholar 

  • Feldman AG (1986) Once more on the equilibrium-point hypothesis (λ model) for motor control. J Mot Behav 18(1):17–54

    Article  CAS  PubMed  Google Scholar 

  • Harischandra N, Cabelguen J-M, Ekeberg Ö (2010) A 3D musculo-mechanical model of the salamander for the study of different gaits and modes of locomotion. Front. Neurorobot 4:1–10

    Article  Google Scholar 

  • Harischandra N, Knuesel J, Kozlov A, Bicanski A et al (2011) Sensory feedback plays a significant role in generating walking gait and in gait transition in salamanders: a simulation study. Front. Neurorobot 5:1–13

    Article  Google Scholar 

  • Hogan N, Sternad D (2007) On rhythmic and discrete movements: reflections, definitions and implications for motor control. Exp Brain Res 181(1):13–30

    Article  PubMed  Google Scholar 

  • Ijspeert AJ (2000) A 3-D biomechanical model of the salamander. Lect Notes Comput Sci 1834:225–234

    Article  Google Scholar 

  • Ijspeert AJ (2001) A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biol Cybern 84(5):331–348

    Article  CAS  PubMed  Google Scholar 

  • Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21(4):642–653

    Article  PubMed  Google Scholar 

  • Ijspeert AJ, Crespi A, Ryczko D, Cabelguen J-M (2007) From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817):1416–1420

    Article  CAS  PubMed  Google Scholar 

  • Johnson MD, Heckman CJ (2014) Gain control mechanisms in spinal motoneurons. Front Neural Circuits 8(81):1–7

    Google Scholar 

  • Johnson MD, Hyngstrom AS, Manuel M, Heckman CJ (2012) Push–pull control of motor output. J Neurosci 32(13):4592–4599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiehn O (2016) Decoding the organization of spinal circuits that control locomotion. Nat Rev Neurosci 17(4):224–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knüsel J, Bicanski A, Ryczko D, Cabelguen J-M et al (2013) A salamander’s flexible spinal network for locomotion, modeled at two levels of abstraction. Integr Comp Biol 53(2):1–14

    Article  Google Scholar 

  • Latash ML (2010) Motor synergies and the equilibrium-point hypothesis. Mot Control 14(3):294–322

    Article  Google Scholar 

  • Liu Q, Wang JZ (2018) Modeling and analysis of a new locomotion control neural network. Biol Cybern 112(4):345–356

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Yang HZ, Zhang JX, Wang JZ (2018) A new model of the spinal locomotor networks of a salamander and its properties. Biol Cybern 112(4):369–385

    Article  PubMed  Google Scholar 

  • Markin SN, Klishko AN, Shevtsova NA, Lemay NA (2010) Afferent control of locomotor CPG: insights from a simple neuromechanical model. Ann N Y Acad Sci 1198:21–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsui K, Hishii Y, Maegaki K, Yamashita Y (2014) Equilibrium-point control of human elbow-joint movement under isometric environment by using multichannel functional electrical stimulation. Front Neurosci 8(164):1–9

    Google Scholar 

  • McLean D, Fan J, Higasshijima S, Hale ME, Fetcho JR (2007) A topographic map of recruitment in spinal cord. Nature 446(3):71–75

    Article  CAS  PubMed  Google Scholar 

  • McLean DL, Masino MA, Koh IYY, Lindquist WB, Fetcho JR (2008) Continuous shifts in the active set of spinal interneurons during changes in locomotor speed. Nat Neurosci 11(12):1419–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mussa-Ivaldi FA, Giszter SF, Bizzi E (1994) Linear combinations of primitives in vertebrate motor control. Proc Natl Acad Sci 91(16):7534–7538

    Article  CAS  PubMed  Google Scholar 

  • Ryczko D, Knüsel J, Crespi A, Lamarque S, Mathou A, Ijspeert AJ, Cabelguen JM (2015) Flexibility of the axial central pattern generator network for locomotion in the salamander. J Neurophysiol 113:1921–1940

    Article  CAS  PubMed  Google Scholar 

  • Talpalar AE, Endo T, Löw P, Kiehn O (2011) Identification of minimal neuronal networks involved in flexor-extensor alternation in the mammalian spinal cord. Neuron 71(6):1071–1084

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China under grants 61105110 and 11573011, the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under grant 14KJB510004, the Lianyungang “Petrel Project,” the Lianyungang “521” Project, and the Six Talent Peaks Project in Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Liu.

Additional information

Communicated by Benjamin Lindner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Appendices

Appendix 1: Calculation of turning control input for turning gait IV

When the biomechanical model turns left, the turning control inputs applied to the elbow joint and leg-raising oscillators for generating turning gait IV can be calculated by:

$$ \left\{ \begin{array}{l} s_{iT} = k_{3} u,\begin{array}{*{20}l} {} \\ \end{array} (i = 27,31) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 28,32) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 30,33) \hfill \\ s_{iT} = k_{3} u,\begin{array}{*{20}l} {} \\ \end{array} (i = 29,34) \hfill \\ \end{array} \right.,\begin{array}{*{20}l} {} \\ \end{array} (F_{l} \le F_{T} ,F_{r} > F_{T} ), $$
(9)
$$ \left\{ \begin{array}{l} s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 27,31) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 28,32) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 30,33) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 29,34) \hfill \\ \end{array} \right.,\begin{array}{*{20}l} {} \\ \end{array} (F_{l} \le F_{T} ,F_{r} \le F_{T} ), $$
(10)
$$ \left\{ \begin{array}{l} s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 27,31) \hfill \\ s_{iT} = k_{3} u,\begin{array}{*{20}l} {} \\ \end{array} (i = 28,32) \hfill \\ s_{iT} = k_{3} u,\begin{array}{*{20}l} {} \\ \end{array} (i = 30,33) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 29,34) \hfill \\ \end{array} \right.,\begin{array}{*{20}l} {} \\ \end{array} (F_{l} > F_{T} ,F_{r} \le F_{T} ), $$
(11)
$$ \left\{ \begin{array}{l} s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 27,31) \hfill \\ s_{iT} = k_{3} u,\begin{array}{*{20}l} {} \\ \end{array} (i = 28,32) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 30,33) \hfill \\ s_{iT} = k_{3} u,\begin{array}{*{20}l} {} \\ \end{array} (i = 29,34) \hfill \\ \end{array} \right.,\begin{array}{*{20}l} {} \\ \end{array} (F_{l} > F_{T} ,F_{r} > F_{T} ), $$
(12)

where \( k_{ 3} \) is the control gain of turning gait IV, \( F_{l} \) is the contact force between the left forelimb and the ground, \( F_{r} \) is the contact force between the right forelimb and the ground, and \( F_{T} \) is the contact force threshold between the forelimb and the ground.

When the biomechanical model turns right, the turning control inputs applied to the elbow joint and leg-raising oscillators for generating turning gait IV can be calculated by:

$$ \left\{ \begin{array}{l} s_{iT} = { - }k_{3} u,\begin{array}{*{20}l} {} \\ \end{array} (i = 27,32) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 28,31) \hfill \\ s_{iT} = { - }k_{3} u,\begin{array}{*{20}l} {} \\ \end{array} (i = 29,33) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 30,34) \hfill \\ \end{array} \right.,\begin{array}{*{20}l} {} \\ \end{array} (F_{l} \le F_{T} ,F_{r} > F_{T} ), $$
(13)
$$ \left\{ \begin{array}{l} s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 27,32) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 28,31) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 30,34) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 29,33) \hfill \\ \end{array} \right.,\begin{array}{*{20}l} {} \\ \end{array} (F_{l} \le F_{T} ,F_{r} \le F_{T} ), $$
(14)
$$ \left\{ \begin{array}{l} s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 27,32) \hfill \\ s_{iT} = { - }k_{3} u,\begin{array}{*{20}l} {} \\ \end{array} (i = 28,31) \hfill \\ s_{iT} = { - }k_{3} u,\begin{array}{*{20}l} {} \\ \end{array} (i = 30,34) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 29,33) \hfill \\ \end{array} \right.,\begin{array}{*{20}l} {} \\ \end{array} (F_{l} > F_{T} ,F_{r} \le F_{T} ), $$
(15)
$$ \left\{ \begin{array}{l} s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 27,32) \hfill \\ s_{iT} = { - }k_{3} u,\begin{array}{*{20}l} {} \\ \end{array} (i = 28,31) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 30,34) \hfill \\ s_{iT} = { - }k_{3} u,\begin{array}{*{20}l} {} \\ \end{array} (i = 29,33) \hfill \\ \end{array} \right.,\begin{array}{*{20}l} {} \\ \end{array} (F_{l} > F_{T} ,F_{r} > F_{T} ). $$
(16)

Appendix 2: Calculation of turning control input for side-stepping applying control signals to the motoneuron pool

When the biomechanical model turns left, the turning control signals applied to the forelimb motoneuron pool for the side-stepping can be calculated by:

$$ \left\{ \begin{array}{l} s_{iT} = k_{ 4} u,\begin{array}{*{20}l} {} \\ \end{array} (i = 69,73) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 70,74) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 72,75) \hfill \\ s_{iT} = k_{ 4} u,\begin{array}{*{20}l} {} \\ \end{array} (i = 71,76) \hfill \\ \end{array} \right.,\begin{array}{*{20}l} {} \\ \end{array} (F_{l} \le F_{T} ,F_{r} > F_{T} ), $$
(17)
$$ \left\{ \begin{array}{l} s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 69,73) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 70,74) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 72,75) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 71,76) \hfill \\ \end{array} \right.,\begin{array}{*{20}l} {} \\ \end{array} (F_{l} \le F_{T} ,F_{r} \le F_{T} ), $$
(18)
$$ \left\{ \begin{array}{l} s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 69,73) \hfill \\ s_{iT} = k_{ 4} u,\begin{array}{*{20}l} {} \\ \end{array} (i = 70,74) \hfill \\ s_{iT} = k_{ 4} u,\begin{array}{*{20}l} {} \\ \end{array} (i = 72,75) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 71,76) \hfill \\ \end{array} \right.,\begin{array}{*{20}l} {} \\ \end{array} (F_{l} > F_{T} ,F_{r} \le F_{T} ), $$
(19)
$$ \left\{ \begin{array}{l} s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 69,73) \hfill \\ s_{iT} = k_{ 4} u,\begin{array}{*{20}l} {} \\ \end{array} (i = 70,74) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 72,75) \hfill \\ s_{iT} = k_{ 4} u,\begin{array}{*{20}l} {} \\ \end{array} (i = 71,76) \hfill \\ \end{array} \right.,\begin{array}{*{20}l} {} \\ \end{array} (F_{l} > F_{T} ,F_{r} > F_{T} ), $$
(20)

where \( k_{ 3} \) is the control gain of the side-stepping applying the turning control signals to the motoneuron pool.

When the biomechanical model turns right, the turning control signals applied to the forelimb motoneuron pool for the side-stepping can be calculated by:

$$ \left\{ \begin{array}{l} s_{iT} = { - }k_{ 4} u,\begin{array}{*{20}l} {} \\ \end{array} (i = 69,74) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 70,73) \hfill \\ s_{iT} = { - }k_{ 4} u,\begin{array}{*{20}l} {} \\ \end{array} (i = 71,75) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 72,76) \hfill \\ \end{array} \right.,\begin{array}{*{20}l} {} \\ \end{array} (F_{l} \le F_{T} ,F_{r} > F_{T} ), $$
(21)
$$ \left\{ \begin{array}{l} s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 69,74) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 70,73) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 71,75) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 72,76) \hfill \\ \end{array} \right.,\begin{array}{*{20}l} {} \\ \end{array} (F_{l} \le F_{T} ,F_{r} \le F_{T} ), $$
(22)
$$ \left\{ \begin{array}{l} s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 69,74) \hfill \\ s_{iT} = { - }k_{ 4} u,\begin{array}{*{20}l} {} \\ \end{array} (i = 70,73) \hfill \\ s_{iT} = { - }k_{ 4} u,\begin{array}{*{20}l} {} \\ \end{array} (i = 71,75) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 72,76) \hfill \\ \end{array} \right.,\begin{array}{*{20}l} {} \\ \end{array} (F_{l} > F_{T} ,F_{r} \le F_{T} ), $$
(23)
$$ \left\{ \begin{array}{l} s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 69,74) \hfill \\ s_{iT} = { - }k_{ 4} u,\begin{array}{*{20}l} {} \\ \end{array} (i = 70,73) \hfill \\ s_{iT} = 0,\begin{array}{*{20}l} {} \\ \end{array} (i = 71,75) \hfill \\ s_{iT} = { - }k_{ 4} u,\begin{array}{*{20}l} {} \\ \end{array} (i = 72,76) \hfill \\ \end{array} \right.,\begin{array}{*{20}l} {} \\ \end{array} (F_{l} > F_{T} ,F_{r} > F_{T} ). $$
(24)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Zhang, Y., Wang, J. et al. Modeling of the neural mechanism underlying the terrestrial turning of the salamander. Biol Cybern 114, 317–336 (2020). https://doi.org/10.1007/s00422-020-00821-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-020-00821-1

Keywords

Navigation