Skip to main content
Log in

Bio-inspired modeling and implementation of the ocelli visual system of flying insects

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Two visual sensing modalities in insects, the ocelli and compound eyes, provide signals used for flight stabilization and navigation. In this article, a generalized model of the ocellar visual system is developed for a 3-D visual simulation environment based on behavioral, anatomical, and electrophysiological data from several species. A linear measurement model is estimated from Monte Carlo simulation in a cluttered urban environment relating state changes of the vehicle to the outputs of the ocellar model. A fully analog-printed circuit board sensor based on this model is designed and fabricated. Open-loop characterization of the sensor to visual stimuli induced by self motion is performed. Closed-loop stabilizing feedback of the sensor in combination with optic flow sensors is implemented onboard a quadrotor micro-air vehicle and its impulse response is characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Arning RK, Sassen S (2004) Flight control of micro aerial vehicles. In: AIAA guidance, navigation, and control conference and exhibit, pp 16–19

  • Chahl J, Mizutani A (2012) Biomimetic attitude and orientation sensors. IEEE Sens J 12(2):289–297

    Article  Google Scholar 

  • Chahl J, Thakoor S, Le Bouffant N, Stange G, Srinivasan MV, Hine B, Zornetzer S (2003) Bioinspired engineering of exploration systems: a horizon sensor/attitude reference system based on the dragonfly ocelli for mars exploration applications. J Robot Syst 20(1):35–42

  • Conroy J, Gremillion G, Ranganathan B, Humbert JS (2009) Implementation of wide-field integration of optic flow for autonomous quadrotor navigation. Auton Robot 27(3):189–198

    Article  Google Scholar 

  • Hengstenberg R (1991) Gaze control in the blowfly calliphora: a multisensory, two-stage integration process. Semin Neurosci 3(1):19–29

    Article  Google Scholar 

  • Hu KG, Reichert H, Stark WS (1978) Electrophysiological characterization of drosophila ocelli. J Comp Physiol 126(1):15–24

    Article  Google Scholar 

  • Humbert JS, Hyslop A, Chinn M (2007) Experimental validation of wide-field integration methods for autonomous navigation. In: IEEE/RSJ international conference on intelligent robots and systems, pp 2144–2149

  • Kerhuel L, Viollet S, Franceschini N (2010) Steering by gazing: an efficient biomimetic control strategy for visually guided micro aerial vehicles. IEEE Trans Robot 26(2):307–319

    Article  Google Scholar 

  • Kirschfeld K, Feiler R, Vogt K (1988) Evidence for a sensitizing pigment in the ocellar photoreceptors of the fly (musca, calliphora). J Comp Physiol A 163(4):421–423

    Article  Google Scholar 

  • Kordes T, Buschmann M, Winkler S, Schulz HW, Vorsmann P (2003) Progresses in the development of the fully autonomous mav carolo. In: 2nd AIAA unmanned unlimited systems, technologies, and operations aerospace

  • Krapp H, Wicklein M (2008) Central processing of visual information in insects. Senses Compr Ref 1:131–204

    Article  Google Scholar 

  • Krapp HG (2009) Ocelli. Curr Biol 19(11):R435–R437

    Article  CAS  PubMed  Google Scholar 

  • Krapp HG, Hengstenberg R et al (1996) Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384(6608):463–466

    Article  CAS  PubMed  Google Scholar 

  • Laughlin SB, Parsons MM, Krapp HG (2010) Sensor fusion for feedback control of gaze stabilisation in the fly. Technical report, DTIC Document

  • Moore RJD, Thurrowgood S, Bland D, Soccol D, Srinivasan MV (2011) A fast and adaptive method for estimating uav attitude from the visual horizon. In: IEEE/RSJ international conference on intelligent robots and systems, IEEE, pp 4935–4940

  • Motazed B, Vos D, Drela M (1998) Aerodynamics and flight control design for hovering micro air vehicles. In: Proceedings of the 1998 American control conference, IEEE, vol 2, pp 681–683

  • Neumann TR, Bülthoff HH (2001) Insect inspired visual control of translatory flight. In: Advances in artificial life. Springer, pp 627–636

  • Neumann TR, Bülthoff HH (2002) Behavior-oriented vision for biomimetic flight control. In: Proceedings of the EPSRC/BBSRC international workshop on biologically inspired robotics, pp 196–203

  • Parsons MM, Krapp HG, Laughlin SB (2010) Sensor fusion in identified visual interneurons. Curr Biol 20(7):624–628

    Article  CAS  PubMed  Google Scholar 

  • Schenato L, Wu WC, Sastry S (2004) Attitude control for a micromechanical flying insect via sensor output feedback. IEEE Trans Robot Autom 20(1):93–106

    Article  Google Scholar 

  • Schuppe H, Hengstenberg R (1993) Optical properties of the ocelli of calliphora erythrocephala and their role in the dorsal light response. J Comp Physiol A 173(2):143–149

    Article  Google Scholar 

  • Simmons P, Jian S, Rind F (1994) Characterisation of large second-order ocellar neurones of the blowfly calliphora erythrocephala. J Exp Biol 191(1):231–245

    PubMed  Google Scholar 

  • Srinivasan M, Zhang S, Lehrer M, Collett T (1996) Honeybee navigation en route to the goal: visual flight control and odometry. J Exp Biol 199(1):237–244

  • Srinivasan MV (1994) An image-interpolation technique for the computation of optic flow and egomotion. Biol Cybern 71(5):401–415

    Article  Google Scholar 

  • Stange G (1981) The ocellar component of flight equilibrium control in dragonflies. J Comp Physiol 141(3):335–347

    Article  Google Scholar 

  • Stange G, Stowe S, Chahl J, Massaro A (2002) Anisotropic imaging in the dragonfly median ocellus: a matched filter for horizon detection. J Comp Physiol A 188(6):455–467

    Article  CAS  Google Scholar 

  • Taylor GK, Krapp HG (2007) Sensory systems and flight stability: what do insects measure and why? Adv Insect Physiol 34:231–316

    Article  Google Scholar 

  • van Kleef J, Berry R, Stange G (2008) Directional selectivity in the simple eye of an insect. J Neurosci 28(11):2845–2855

    Article  PubMed  Google Scholar 

  • Viollet S, Zeil J (2013) Feed-forward and visual feedback control of head roll orientation in wasps (polistes humilis, vespidae, hymenoptera). J Exp Biol 216(7):1280–1291

    Article  PubMed  Google Scholar 

  • Wang W, Zhou Y, Wang F, Cheng Y, Song Y, Nonami K (2012) Attitude controller design for a small size multi-rotor mav. Inf Eng Lett 2(3):20–27

  • Wendel J, Meister O, Schlaile C, Trommer GF (2006) An integrated gps/mems-imu navigation system for an autonomous helicopter. Aerosp Sci Technol 10(6):527–533

    Article  Google Scholar 

  • Wilson M (1978) The functional organisation of locust ocelli. J Comp Physiol 124(4):297–316

    Article  Google Scholar 

  • Wu WC, Schenato L, Wood RJ, Fearing RS (2003) Biomimetic sensor suite for flight control of a micromechanical flying insect: design and experimental results. In: IEEE international conference on robotics and automation, IEEE, vol 1, pp 1146–1151

Download references

Acknowledgments

The authors would like to thank Hector Escobar Alvarez for his assistance with vehicle hardware integration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Gremillion.

Additional information

This work was supported by AFOSR FA9550-09-1-0075.

Appendix

Appendix

Matrix of relative variance values, \(\sigma _\mathrm{rel}^2\), from (4):

$$\begin{aligned} R \!=\! \left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 3.291 &{} \mathbf{0.2490 } &{} \mathbf{0.0044 } &{} \mathbf{0.0045 } &{} 245.1 &{} \mathbf{0.0090 } &{} \mathbf{0.0379 } &{} 691.2 \\ 26350 &{} \mathbf{0.2198 } &{} 18.548 &{} 5.776 &{} 7.442 &{} \mathbf{0.0068 } &{} \mathbf{0.0088 } &{} 1468 \\ 178.79 &{} \mathbf{0.2431 } &{} 653.8 &{} 32.71 &{} 7.030 &{} \mathbf{0.0082 } &{} \mathbf{0.0089 } &{} 126.7 \nonumber \end{array} \right] \\ \end{aligned}$$
(11)

Matrix of partial F-ratio values, \(F_n\), from (5):

$$\begin{aligned} P = \left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} \mathbf{427.3 } &{} \mathbf{1309 } &{} \mathbf{1488 } &{} 0.4943 &{} \mathbf{612.1 } &{} \mathbf{355.2 } &{} 0.4641 &{} \mathbf{138.4 } \\ \mathbf{757.0 } &{} \mathbf{1194 } &{} \mathbf{6.315 } &{} 0.0740 &{} \mathbf{687.6 } &{} \mathbf{420.1 } &{} 0.5089 &{} \mathbf{175.1 } \\ \mathbf{753.5 } &{} \mathbf{1134 } &{} \mathbf{3.528 } &{} 0.0564 &{} \mathbf{634.4 } &{} \mathbf{702.5 } &{} 0.4819 &{} \mathbf{215.3 } \nonumber \end{array} \right] \\ \end{aligned}$$
(12)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gremillion, G., Humbert, J.S. & Krapp, H.G. Bio-inspired modeling and implementation of the ocelli visual system of flying insects. Biol Cybern 108, 735–746 (2014). https://doi.org/10.1007/s00422-014-0610-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-014-0610-x

Keywords

Navigation