Skip to main content

Advertisement

Log in

Regularized logistic regression and multiobjective variable selection for classifying MEG data

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

This paper addresses the question of maximizing classifier accuracy for classifying task-related mental activity from Magnetoencelophalography (MEG) data. We propose the use of different sources of information and introduce an automatic channel selection procedure. To determine an informative set of channels, our approach combines a variety of machine learning algorithms: feature subset selection methods, classifiers based on regularized logistic regression, information fusion, and multiobjective optimization based on probabilistic modeling of the search space. The experimental results show that our proposal is able to improve classification accuracy compared to approaches whose classifiers use only one type of MEG information or for which the set of channels is fixed a priori.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Armañanzas R, Saeys Y, Inza I, García-Torres M, Bielza C, van de Peer Y, Larrañaga P (2011) Peakbin selection in mass spectrometry data using a consensus approach with estimation of distribution algorithms. IEEE/ACM Trans Comput Biol Bioinf 8(3): 760–774

    Article  Google Scholar 

  • Asano F, Kimura M, Sekiguchi T, Kamitani Y (2009) Classification of movement-related single-trial MEG data using adaptive spatial filter. In: Acoustics, speech and signal processing, 2009. ICASSP 2009. IEEE international conference on, pp 357–360. IEEE, Rotterdam

  • Besserve M, Jerbi K, Laurent F, Baillet S, Martinerie J, Garnero L (2007) Classification methods for ongoing EEG and MEG signals. Biol Res 40(4): 415–437

    Article  PubMed  Google Scholar 

  • Bianchi L, Sami S, Hillebrand A, Fawcett I, Quitadamo L, Seri S (2010) Which physiological components are more suitable for visual ERP based brain–computer interface? A preliminary MEG/EEG study. Brain Topogr 23(2): 180–185

    Article  PubMed  Google Scholar 

  • Bucolo M, Di Grazia F, Frasca M (2008) From synchronization to network theory: a strategy for MEG data analysis. In: Proceedings of 16th mediterranean conference on control and automation, pp 854–859, Ajaccio, France. IEEE Press, Piscataway, NJ

  • Carmena J, Lebedev M, Crist R, Doherty J, Santucci D, Dimitrov D, Patil P, Henriquez C, Nicolelis M (2003) Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol 1(2): 193–208

    Article  CAS  Google Scholar 

  • Coello C, Lamont G, Van Veldhuizen D (2007) Evolutionary algorithms for solving multi-objective problems. Springer, New York

    Google Scholar 

  • Darvas F, Leahy RM (2007) Handbook of brain connectivity, chapter functional imaging of brain activity and connectivity with MEG, pp 201–220. Kluwer Academic Publishers, Boston

  • de Lange FP, Jensen O, Bauer M, Toni I (2008) Interactions between posterior gamma and frontal alpha/beta oscillations during imagined actions. Front Hum Neurosci 2(7): 1–12

    Google Scholar 

  • Di Grazia F, Sapuppo F, Shannahoff-Khalsa D, Bucolo M (2009) Network parameters for studying functional connectivity in brain MEG data. Int J Bioelectromagn 11(4): 161–169

    Google Scholar 

  • Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1): 1–22

    PubMed  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading, MA

    Google Scholar 

  • Guimera R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433: 895–900

    Article  PubMed  CAS  Google Scholar 

  • Haufe S, Tomioka R, Nolte G, Muller K, Kawanabe M (2010) Modeling sparse connectivity between underlying brain sources for eeg/meg. IEEE Trans Biomed Eng 57(8): 1954–1963

    Article  PubMed  Google Scholar 

  • Hoffmann U, Vesin J, Ebrahimi T, Diserens K (2008) An efficient p300-based brain-computer interface for disabled subjects. J Neurosci Methods 167(1): 115–125

    Article  PubMed  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Ann Arbor, MI

    Google Scholar 

  • Inza I, Larrañaga P, Etxeberria R, Sierra B (2000) Feature subset selection by Bayesian network-based optimization. Artif Intell 123(1–2): 157–184

    Article  Google Scholar 

  • Iturrate I, Antelis J, Minguez J, Kübler A (2009) A non-invasive brain-actuated wheelchair based on a p300 neurophysiological protocol and automated navigation. IEEE Trans Robot 25(3): 614–627

    Article  Google Scholar 

  • Kelly S, Lalor E, Finucane C, McDarby G, Reilly R (2005) Visual spatial attention control in an independent brain-computer interface. IEEE Trans Biomed Eng 52(9): 1588–1596

    Article  PubMed  Google Scholar 

  • Larrañaga, P, Lozano, JA (eds) (2002) Estimation of distribution algorithms. A new tool for evolutionary computation. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Lebedev M, Nicolelis M (2006) Brain-machine interfaces: past, present and future. Trends Neurosci 29(9): 536–546

    Article  PubMed  CAS  Google Scholar 

  • Leicht EA, Newman MEJ (2008) Community structure in directed networks. Phys Rev Lett 100: 118703

    Article  PubMed  CAS  Google Scholar 

  • Lotte F, Congedo M, Lecuyer A, Lamarche F, Arnaldi B (2007) A review of classification algorithms for EEG-based brain–computer interfaces. J Neural Eng 4: R1–R13

    Article  PubMed  CAS  Google Scholar 

  • McLachlan G (1992) Discriminant analysis and statistical pattern recognition. Wiley, New York

    Book  Google Scholar 

  • Mendiburu A, Miguel-Alonso J, Lozano JA, Ostra M, Ubide C (2006) Parallel EDAs to create multivariate calibration models for quantitative chemical applications. J Parallel Distrib Comput 66(8): 1002–1013

    Article  Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298: 824–827

    Article  PubMed  CAS  Google Scholar 

  • Mühlenbein H, Paaß G (1996) From recombination of genes to the estimation of distributions I. Binary parameters. In: Voigt H-M, Ebeling W, Rechenberg I, Schwefel H-P (eds) Proceedings of the 4th international conference on parallel problem solving from nature-PPSN IV, vol 1141 of lectures notes in computer science, pp 178–187. Springer, Berlin

  • Nicolelis M (2003) Brain–machine interfaces to restore motor function and probe neural circuits. Nat Rev Neurosci 4(5): 417–422

    Article  PubMed  CAS  Google Scholar 

  • Obermaier B, Munteanu C, Rosa A, Pfurtscheller G (2001) Asymmetric hemisphere modeling in an offline brain–computer interface. IEEE Trans Syst, Man, Cybern C 31(4): 537–540

    Article  Google Scholar 

  • Pelikan M, Goldberg DE, Lobo F (2002) A survey of optimization by building and using probabilistic models. Comput Opt Appl 21(1): 5–20

    Article  Google Scholar 

  • Rieger J, Reichert C, Gegenfurtner K, Noesselt T, Braun C, Heinze H, Kruse R, Hinrichs H (2008) Predicting the recognition of natural scenes from single trial MEG recordings of brain activity. Neuroimage 42(3): 1056–1068

    Article  PubMed  Google Scholar 

  • Rossini L, Izzo D, Summerer L (2009) Brain-machine interfaces for space applications. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, vol 1, pp 520–523, Minnesota

  • Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23(19): 2507–2517

    Article  PubMed  CAS  Google Scholar 

  • Santana R, Bielza C, Larrañaga P (2010a) Synergies between network-based representations and probabilistic graphical modeling in the solution of problems from neuroscience. In: García-Pedrajas N et al. (eds) Proceedings of the twenty third international conference on industrial, engineering and other applications of applied intelligent systems, vol 6098 of lecture notes in artificial intelligence, pp 149–158, Springer, Córdoba

  • Santana R, Bielza C, Larrañaga P (2010b) Using probabilistic dependencies improves the search of conductance-based compartmental neuron models. In C. Pizzuti, M. D. Ritchie, and M. Giacobini, editors, Proceedings of the 8th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, volume 6023 of Lecture Notes in Artificial Intelligence, pages 170–181. Springer

  • Santana R, Bielza C, Larrañaga P, Lozano JA, Echegoyen C, Mendiburu A, Armañanzas R, Shakya S (2010c) Mateda-2.0: A MATLAB package for the implementation and analysis of estimation of distribution algorithms. J Stat Softw 35(7): 1–30

    Google Scholar 

  • Santana R, Ochoa A, Soto MR (2001) The mixture of trees factorized distribution algorithm. In: Proceedings of the genetic and evolutionary computation conference GECCO-2001, pp 543–550. Morgan Kaufmann Publishers, San Francisco, CA

  • Sporns O (2002) Neuroscience databases. A practical guide, chapter graph theory methods for the analysis of neural connectivity patterns, pp 171–186. Kluwer, Boston, MA

  • Tan L, Jansari A, Keng S, Goh S (2009) Human-computer interaction. Novel interaction methods and techniques, chapter effect of mental training on BCI performance, pp 632–635. Springer, Berlin

  • The MathWorks Inc. (2007) MATLAB—the language of technical computing, version 7.5. The MathWorks Inc., Natick, MA

  • Valdés-Sosa PA, Sánchez-Bornot JM, Lage-Castellanos A, Vega-Hernández M, Bosch-Bayard J, Melie-García L, Canales-Rodríguez E (2005) Estimating brain functional connectivity with sparse multivariate autoregression. Philos Trans 360(1457): 969–981

    Article  Google Scholar 

  • van-Gerven M, Bahramisharif A, Heskes T, Jensen O (2009) Selecting features for BCI control based on a covert spatial attention paradigm. Neural Networks 22: 1271–1277

    Article  PubMed  Google Scholar 

  • van-Gerven M, Jensen O (2009) Attention modulations of posterior alpha as a control signal for two-dimensional brain-computer interfaces. J Neurosci Methods 179: 78–84

    Article  PubMed  Google Scholar 

  • Vapnik V (2000) The nature of statistical learning theory. Springer, New York

    Google Scholar 

  • Waldert S, Braun C, Preissl H, Birbaumer N, Aertsen A, Mehring C (2007) Decoding performance for hand movements: EEG vs. MEG. In: Engineering in medicine and biology society, 2007. EMBS 2007. 29th Annual international conference of the IEEE, pp 5346–5348. IEEE, Washington, DC

  • Wang W, Sudre G, Xu Y, Kass R, Collinger J, Degenhart A, Bagic A, Weber D (2010) Decoding and cortical source localization for intended movement direction with MEG. J Neurophysiol 104(5): 2451–2461

    Article  PubMed  Google Scholar 

  • Wolpaw J, Birbaumer N, McFarland D, Pfurtscheller G, Vaughan T (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6): 767–791

    Article  PubMed  Google Scholar 

  • Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc: Ser B 67(2): 301–320

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Santana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santana, R., Bielza, C. & Larrañaga, P. Regularized logistic regression and multiobjective variable selection for classifying MEG data. Biol Cybern 106, 389–405 (2012). https://doi.org/10.1007/s00422-012-0506-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-012-0506-6

Keywords

Navigation