Skip to main content
Log in

Visual perception of ambiguous figures: synchronization based neural models

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We develop and study two neural network models of perceptual alternations. Both models have a star-like architecture of connections with a central element connected to a set of peripheral elements. A particular perception is simulated in terms of partial synchronization between the central element and some sub-group of peripheral elements. The first model is constructed from phase oscillators and the mechanism of perceptual alternations is based on chaotic intermittency under fixed parameter values. Similar to experimental evidence, the distribution of times between perceptual alternations is represented by the gamma distribution. The second model is built of spiking neurons of the Hodgkin–Huxley type. The mechanism of perceptual alternations is based on plasticity of inhibitory synapses which increases the inhibition from the central unit to the neural assembly representing the current percept. As a result another perception is formed. Simulations show that the second model is in good agreement with behavioural data on switching times between percepts of ambiguous figures and with experimental results on binocular rivalry of two and four percepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian E (1926) The impulses produced by sensory nerve endings. Part 2: The response of a single end-organ. J Physiol 61: 151–171

    PubMed  CAS  Google Scholar 

  • Beck O, Chistiakova M, Obermayer K, Volgushev M (2005) Adaptation at synaptic connections to layer 2/3 pyramidal cells in rat visual cortex. J Neurophysiol 94: 363–376

    Article  PubMed  Google Scholar 

  • Bialek W, DeWeese M (1995) Random switching and optimal processing in the perception of ambiguous signals. Phys Rev Lett 74: 3077–3080

    Article  PubMed  CAS  Google Scholar 

  • Blake R (1989) A neural theory of binocular rivalry. Psychol Rev 96(1): 145–167

    Article  PubMed  CAS  Google Scholar 

  • Borisyuk RM, Hoppensteadt F (2004) A theory of epineuronal memory. Neural Netw 17: 1427–1436

    Article  PubMed  Google Scholar 

  • Borisyuk RM, Kazanovich YB (2003) Oscillatory neural network model of attention focus formation and control. Biosystems 71: 29–38

    Article  PubMed  Google Scholar 

  • Borisyuk RM, Kazanovich YB (2006) Oscillations and waves in the models of interactive neural populations. Biosystems 86: 53–62

    Article  PubMed  Google Scholar 

  • Borsellino A, de Marco A, Allazetta A, Rinesi S, Bartolini B (1972) Reversal time distribution in the perception of visual ambiguous stimuli. Biol Cybern 10: 139–144

    CAS  Google Scholar 

  • Borisyuk GN, Borisyuk RM, Kirillov AB, Kovalenko EI, Kryukov VI (1985) A new statistical method for identifying interconnections between neuronal network elements. Biol Cybern 52(5): 301–306

    Article  PubMed  CAS  Google Scholar 

  • Bossink CJH, Stalmeier PFM, de Weert CMM (1993) A test of Levelt’s second proposition for binocular rivalry. Vision Res 33: 1413–1419

    Article  PubMed  CAS  Google Scholar 

  • Brager DH, Capogna M, Thompson SM (2002) Short-term synaptic plasticity, simulation of nerve terminal dynamics, and the effects of protein kinase C activation in rat hippocampus. J Physiol 541: 545–559

    Article  PubMed  Google Scholar 

  • Choi IS, Cho JH, Jeong SG, Hong JS, Kim SJ, Kim J, Lee MG, Choi BJ, Jang IS (2008) GABA B receptor-mediated presynaptic inhibition of glycinergic transmission onto substantia gelatinosa neurons in the rat spinal cord. Pain. doi:10.1016/j.pain.2008.01.005

  • Damasio A (1989) The brain binds entities and events by multiregional activation from convergent zones. Neural Comput 1: 123–132

    Article  Google Scholar 

  • Dayan P (1998) A hierarchical model of binocular rivalry. Neural Comput 10: 1119–1135

    Article  PubMed  CAS  Google Scholar 

  • De Marco A, Penengo P, Trabucco A (1977) Stochastic models and fluctuations in reversal time of ambiguous figures. Perception 6(6): 645–656

    Article  PubMed  Google Scholar 

  • Einhauser W, Martin KAC, Konig P (2004) Are switches in perception of the Necker cube related to eye position?. Eur J Neurosci 20(10): 2811–2818

    Article  PubMed  Google Scholar 

  • Engel A, Singer W (2001) Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci 5: 16–25

    Article  PubMed  Google Scholar 

  • Fitzpatrick JS, Akopian G, Walsh JP (2001) Short term plasticity at inhibitory synapses in rat striatum and its effect on striatal output. J Neurophysiol 85: 2088–2099

    PubMed  CAS  Google Scholar 

  • Fox R, Herrmann J (1967) Stochastic properties of binocular rivalry alternations. Percept Psychophys 2: 432–436

    Google Scholar 

  • Freeman AW (2005) Multistage model for binocular rivalry. J Neurophysiol 94: 4412–4420

    Article  PubMed  Google Scholar 

  • Friston KJ (1997) Another neural code?. Neuroimage 5: 213–220

    Article  PubMed  CAS  Google Scholar 

  • Gertsner W, Kistler WM (2002) Hebbian models. In: Spiking neuron models: single neurons, populations, plasticity, chap 10. Cambridge University Press, London

  • Gray CM (1999) The temporal correlation hypothesis is still alive and well. Neuron 24: 31–47

    Article  PubMed  CAS  Google Scholar 

  • Grossberg S, Swaminathan G (2004) A laminar cortical model for 3D perception of slanted and curved surfaces and of 2D images: development, attention and bistability. Vision Res 44: 1147–1187

    Article  PubMed  Google Scholar 

  • Hancock S, Andrews TJ (2007) The role of voluntary attention in selecting perceptual dominance during binocular rivalry. Perception 36: 288–298

    Article  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its applications to conduction and excitation in nerve. J Physiol 117: 500–544

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1959) Receptive fields of single neurons in the cat’s striate cortex. J Physiol (Lond) 148: 574–591

    CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol (Lond) 160: 106–154

    CAS  Google Scholar 

  • Izhikevich EM (1998) Multiple cusp bifurcations. Neural Netw 11: 495–508

    Article  PubMed  Google Scholar 

  • Kazanovich YB, Borisyuk RM (1999) Dynamics of neural networks with a central element. Neural Netw 12(3): 441–454

    Article  PubMed  Google Scholar 

  • Keil A, Muller MM, Ray WJ, Gruber T, Elbert T (1999) Human gamma band activity and perception of a Gestalt. J Neurosci 19(16): 7152–7161

    PubMed  CAS  Google Scholar 

  • Klemm WR, Li TH, Hernandez JL (2000) Coherent EEG indicators of cognitive binding during ambiguous figure tasks. Conscious. Cogn 9: 66–85

    Article  PubMed  CAS  Google Scholar 

  • Klink PC, van Ee R, Nijs MM, Bruwer GJ, Noest AJ, van Wezel RJA (2008) Early interactions between neuronal adaptation and voluntary control perceptual choices in bistable vision. J Vis 8(5):16, 1–18

    Google Scholar 

  • Kruse P, Carmesin HO, Pahlke L, Strüber D, Stadler M (1996) Continuous phase transitions in the perception of multistable visual patterns. Biol Cybern 75: 321–330

    Article  PubMed  CAS  Google Scholar 

  • Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer, Berlin

    Google Scholar 

  • Laing CR, Chow CC (2002) A spiking neuron model for binocular rivalry. J Comput Neurosci 12: 39–53

    Article  PubMed  Google Scholar 

  • Lehky SR (1988) An astable multivibrator model of binocular rivalry. Perception 17: 215–228

    Article  PubMed  CAS  Google Scholar 

  • Leopold DA, Wilke M, Maier A, Logothetis NK (2002) Stable perception of visually ambiguous patterns. Nature Neurosci 5: 605–609

    Article  PubMed  CAS  Google Scholar 

  • Levelt WJM (1968) On binocular rivalry. The Hague, Mouton

    Google Scholar 

  • Logothetis NK, Leopold DA, Sheinberg DL (1996) What is rivaling during binocular rivalry?. Nature 380: 621–624

    Article  PubMed  CAS  Google Scholar 

  • Lumer ED (1998) A neural model of binocular integration and rivalry based on the coordination of action-potential timing in primary visual cortex. Cereb Cortex 8: 553–561

    Article  PubMed  CAS  Google Scholar 

  • Mathes B, Struber D, Stadler MA, Basar-Eroglu C (2006) Voluntary control of Neckar cube reversals modulates the EEG delta- and gamma-band response. Neurosci Lett 402: 145–149

    Article  PubMed  CAS  Google Scholar 

  • Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268: 1503–1506

    Article  PubMed  CAS  Google Scholar 

  • Melloni L, Molina C, Pena M, Torres D, Singer W, Rodriguez E (2007) Synchronization of neural activity across cortical areas correlates with conscious perception. J Neurosci 27(11): 2858–2865

    Article  PubMed  CAS  Google Scholar 

  • Meng M, Tong F (2004) Can attention selectively bias bistable perception? Differences between binocular rivalry and ambiguous figures. J Vis 4: 539–551

    Article  PubMed  Google Scholar 

  • Montemurro MA, Rasch MJ, Murayama Y, Logothetis NK, Panzeri S (2008) Phase of firing coding of natural visual stimuli in primary visual cortex. Curr Biol 18: 375–380

    Article  PubMed  CAS  Google Scholar 

  • Moore GP, Segundo JP, Perkel DH, Levitan H (1970) Statistical signs of synaptic interaction in neurons. Biophys J 10: 876–900

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Bote R, Rinzel J, Rubin N (2007) Noise-induced alternations in an attractor network model perceptual bistability. J Neurophysiol 98: 1125–1139

    Article  PubMed  Google Scholar 

  • Nakatani H, van Leeuwen C (2006) Transient synchrony of distant brain areas and perceptual switching in ambiguous figures. Biol Cybern 94: 445–457

    Article  PubMed  Google Scholar 

  • Necker LA (1832) Observations on some remarkable phenomenon which occurs on viewing a figure of a crystal of geometrical solid. Lond Edinb Philos Mag J Sci 3: 329–337

    Google Scholar 

  • Ogawa Y, Isokawa T, Matsui N, Murata T (2000) A neural network model for perceptual alternation of ambiguous figures. In: Proc IEEE intl workshop on robot and human interactive communication, pp 264–269

  • Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Curr Opin Neurobiol 14: 481–487

    Article  PubMed  CAS  Google Scholar 

  • Reike F, Warland D, de Ruyter van Steveninck R, Bialek W (1999) Spikes: exploring the neural code. MIT Press, Cambridge

  • Rock I, Gopnik A, Hall S (1994) Do young children reverse ambiguous figures?. Perception 23(6): 635–644

    Article  PubMed  CAS  Google Scholar 

  • Royer S, Paré D (2003) Conservation of total synaptic weights via inverse homo- vs. heterosynaptic LTD and LTP. Nature 422: 518–522

    Article  PubMed  CAS  Google Scholar 

  • Rubin E (1921) Visuell wahrgenommene Figuren. Gyldendals, Copenhagen

    Google Scholar 

  • Shadlen MN, Newsome WT (1994) Noise, neural codes and cortical organization. Curr Opin Neurobiol 4: 569–579

    Article  PubMed  CAS  Google Scholar 

  • Shpiro A, Curtu R, Rinzel J, Rubin N (2007) Dynamical characteristics common to neuronal competition models. J Neurophysiol 97: 462–473

    Article  PubMed  Google Scholar 

  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Ann Rev Neurosci 18: 555–586

    Article  PubMed  CAS  Google Scholar 

  • Slotnick SD, Yantis S (2005) Common neural substrates for the control and effects of visual attention and perceptual bistability. Cogn Brain Res 24: 97–108

    Article  Google Scholar 

  • Stuart E, Walter M, Borisyuk R (2005) The correlation grid: analysis of synchronous spiking in multi-dimensional spike train data and identification of feasible connection architectures. Biosystems 79: 223–233

    Article  PubMed  CAS  Google Scholar 

  • Sudhof TC (2000) The synaptic vesicle cycle revisited. Neuron 28: 317–320

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Grabowecky M (2002) Evidence for perceptual trapping and adaptation in multistable binocular rivalry. Neuron 36: 143–157

    Article  PubMed  CAS  Google Scholar 

  • Tiesinga P, Fellous JM, Sejnowski TJ (2008) Regulation of spike timing in visual cortical circuits. Nat Rev Neurosci 9: 97–109

    Article  PubMed  CAS  Google Scholar 

  • Tsodyks M, Adini Y, Sagi D (2004) Associative learning in early vision. Neural Netw 17: 823–832

    Article  PubMed  Google Scholar 

  • Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5: 97–107

    Article  PubMed  CAS  Google Scholar 

  • Vaadia E, Haalman I, Abeles M, Bergman H, Prut Y, Slovin H, Aersten A (1995) Dynamics of neural interactions in monkey cortex in relation to behavior events. Nature 373: 703–710

    Article  Google Scholar 

  • Van Ee R, Noest AJ, Brascamp JW, van der Berg AV (2006) Attentional control over either of the two competing percepts of ambiguous stimuli revealed by a two-parameter analysis: means do not make the difference. Vision Res 46: 3129–3141

    Article  PubMed  Google Scholar 

  • Volgushev M, Chistiakova M, Singer W (1997) Modification of discharge patterns of neocortical neurons by induced oscillations of the membrane potential. Neuroscience 83: 15–25

    Article  Google Scholar 

  • Von der Malsburg C (2001) Neural basis of binding problem. In: Smelser NJ, Baltes PB (eds) International encyclopedia of social and behavioural sciences. Elsevier, Amsterdam, pp 1178–1180

  • Wilson HR (2003) Computational evidence for a rivalry hierarchy in vision. PNAS 100(24): 14499–14503

    Article  PubMed  CAS  Google Scholar 

  • Windmann S, Wehrmann M, Calabrese P, Gunturkun O (2006) Role of the prefrontal cortex in attentional control over bistable vision. J Cogn Neuro 18(3): 456–471

    Article  Google Scholar 

  • Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Ann Rev Physiol 64: 355–405

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Borisyuk.

Additional information

This article is part of a special issue on Neuronal Dynamics of Sensory Coding.

This special issue is in honour of Professor Pepe Segundo who is one of the pioneers in the study of neural coding. Pepe has been an active participant in many Neural Coding Workshops sharing his great knowledge and experience of research in this field. I (R. Borisyuk) was very happy to meet Pepe for the first time in Prague when attending the first Neural Coding Workshop in 1995. From that time we regularly met at Neural Coding Workshops and these meetings have always been very stimulating and fruitful for my research. Remarkably, the first paper I studied at the beginning of my scientific career was a seminal paper by Moore et al. (1970). For me, this paper provided a great opportunity to learn the basic statistical techniques for the analysis of multiple spike trains and neural coding. According to the Institute of Scientific Information, this paper has been cited 380 times! This exciting paper has inspired my research into the synaptic and functional connectivity of neural circuits derived from spike-train recordings (Borisyuk et al. 1985; Stuart et al. 2005) and guided my search for new ideas on neural coding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisyuk, R., Chik, D. & Kazanovich, Y. Visual perception of ambiguous figures: synchronization based neural models. Biol Cybern 100, 491–504 (2009). https://doi.org/10.1007/s00422-009-0301-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-009-0301-1

Keywords

Navigation