Skip to main content
Log in

Symmetries, non-Euclidean metrics, and patterns in a Swift–Hohenberg model of the visual cortex

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The aim of this work is to investigate the effect of the shift-twist symmetry on pattern formation processes in the visual cortex. First, we describe a generic set of Riemannian metrics of the feature space of orientation preference that obeys properties of the shift-twist, translation, and reflection symmetries. Second, these metrics are embedded in a modified Swift–Hohenberg model. As a result we get a pattern formation process that resembles the pattern formation process in the visual cortex. We focus on the final stable patterns that are regular and periodic. In a third step we analyze the influences on pattern formation using weakly nonlinear theory and mode analysis. We compare the results of the present approach with earlier models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

G(x, y, v):

Elongated Gaussian distribution

\({\hat{R}(\Phi), \hat{T}(\Psi)}\) :

2 × 2 rotation matrices

\({d_{s}^{2}}\) :

Distance between stimuli, between receptive fields and stimuli

x, y, z1, z2:

Real-valued features

x, z :

Complex features

v :

Feature vector

\({\mathcal{V}}\) :

Feature space – manifold

\({\hat{g}, g_{ij}}\) :

Metric tensor

a, b, c, h:

Parameter functions of the metric tensor

β, γ, μ, ν :

Parameter functions in complex coordinates

References

  • Cross MC, Hohenberg PC (1993) Pattern formation outside equilibrium. Rev Mod Phys 65(3): 851–1112

    Article  CAS  Google Scholar 

  • Durbin R, Willshaw D (1987) An analogue approach to the traveling salesman problem using an elsatic net algorithm. Nature 326: 689–691

    Article  PubMed  CAS  Google Scholar 

  • Ernst U, Pawelzik K, Sahar-Pikielny C, Tsodyks M (2001) Intracortical origin of visual maps. Nat Neurosci 4: 431–436

    Article  PubMed  CAS  Google Scholar 

  • Freeman RD, et al (1997) Clustering of response properties of neurons in the visual cortex. In: Social Neuroscience, 23:227.1

  • Jones J, Palmer L (1987) The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J Neurophys 58: 1187–1211

    CAS  Google Scholar 

  • Kaschube M, Wolf F, Geisel T, Loewel S (2001) The prevalance of colinear contours in the real world. Neurocomputing 38(40): 1335–1339

    Article  Google Scholar 

  • Kohonen T (2001) Self-organizing maps. Springer, Heidelberg

    Google Scholar 

  • Liu Z, Gaska JP, Jacobson LD, Pollen DA (1991) Interneural interaction between members od quadrature pairs in the cat’s visual cortex. Vision Res 32: 1193–1198

    Article  Google Scholar 

  • Löwel S (1998) The layout of orientation and ocular dominance domains in area 17 of strabismic cats. Eur J Neurosci 10(8): 2629–43

    Article  PubMed  Google Scholar 

  • Mayer NM, Herrmann MJ, Theo Geisel (1998) A cortical interpretation of ASSOMs. In: Proceedings of International Conference on Artificial Neural Networks (ICANN), vol 2, pp 961–966

  • Mayer NM, Herrmann JM, Geisel T (2002) Curved feature metrices in models of visual cortex. Neurocomputing 44–46(C): 533–539

    Article  Google Scholar 

  • Mayer NM, Herrmann JM, Geisel T (2003) Shaping of receptive fields in visual cortex during retinal maturation. J Comp Neurosci 15(3): 307–320

    Article  Google Scholar 

  • Pollen D, Ronner S (1981) Phase relationships betweeen adjacent simple cells in the visual cortex. Science 212: 1409–1411

    Article  PubMed  CAS  Google Scholar 

  • Riesenhuber M, Bauer H-U, Brockmann D, Geisel T (1998) Breaking rotational symmetry in a self-organizing map model for orientation map development. Neural Comput 10: 717–730

    Article  PubMed  Google Scholar 

  • Ritter H (1999) Self-organizing maps in non-Euclidean spaces. In: Oja E, Kaski S (eds) Kohonen Maps, pp 97–108

  • Ritter H, Martinetz T, Schulten K (1992) Neuronale netze. Addison Wesley, Bonn

    Google Scholar 

  • Sengpiel F, Bonhoeffer T, Stawinski P (1999) Influence of experience on orientation maps in cat visual cortex. Nat Neurosci 2: 727–732

    Article  PubMed  CAS  Google Scholar 

  • Swindale NV (1996) The development of topography in the visual cortex: a review of models. Network 7: 161–247

    Article  PubMed  CAS  Google Scholar 

  • Swindale NV, Shoham D, Grinvald A, Bonhoeffer T, Hübener M (2000) Optimizing coverage in the cortex. Nat Neurosci 3(8): 750–751

    Article  Google Scholar 

  • Thomas PJ, Cowan JD (2003) Symmetry induced coupling of cortical feature maps. Phys Rev Lett 92(18810)

  • Malsburg Cvd (1973) Self-organization of orientation sensitive cells in striate cortex. Kybernetik 14: 49–54

    Article  Google Scholar 

  • Wolf F (2005) Symmetry, multistability, and long-range interactions in brain development. Phys Rev Lett 95(208701)

  • Wolf F, Geisel T (1998) Spontaneous pinwheel annihilation during visual development. Nature 395: 73–78

    Article  PubMed  CAS  Google Scholar 

  • Wolf F, Geisel T (2003) Universality in visual cortical pattern formation. J Phys 97: 253–264

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Michael Mayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michael Mayer, N., Browne, M., Herrmann, J.M. et al. Symmetries, non-Euclidean metrics, and patterns in a Swift–Hohenberg model of the visual cortex. Biol Cybern 99, 63–78 (2008). https://doi.org/10.1007/s00422-008-0238-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0238-9

Keywords

Navigation