Skip to main content
Log in

Iterative cooperation between parallel pathways for object and background motion

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In a typical visual scene, one or more objects move relative to a larger background, which can itself be in motion as a result of the observer’s eyes moving with respect to the outside world. Here we show that accurate estimation of the background motion from an image velocity field can be accomplished through an iterative cooperation between two modules: one that specializes in calculating a weighted average velocity and another one calculating a velocity contrast map. We build on our analysis to provide a model for the tectum-pretectum loop in the nonmammalian midbrain. Our model accounts for some of the known properties of the tectal neurons (sensitivity to relative motion) and pretectal neurons (sensitivity to whole-field motion). It also agrees with our knowledge of the pretectotectal projection (divergent and inhibitory), and with the results of lesion studies in which the pretectal input to the tectum was removed, leading to hyperactivity of the tectal neurons and the animal. Our model also makes a testable prediction regarding the tectopretectal projection, i.e., that the presence of a larger object and a bigger discrepancy between the directions of motion for the object and the background lead to a larger error by the pretectum in estimating the background motion when the tectal input is abolished.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Black MJ, Anandan P (1996) The robust estimation of multiple motions: parametric and piece-wise smooth flow fields. Comput Vis Image Und 63:75–104

    Article  Google Scholar 

  • Butler AB, Hodos W (1996) Comparative vertebrate neuroanatomy: evolution and adaptation. Wiley-Liss, New York

    Google Scholar 

  • Buxaum-Conradi, Ewert J-P (1995) Pretecto-tectal influences. I: what the toad’s pretectum tells its tectum: an antidormic stimulation/recording study. J Comp Physiol A 176:169–180

    Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT Press, Cambridge

    Google Scholar 

  • Ewert P, Schurg-Pfeiffer E, Schwippert W (1996) Influence of pretectal lesions on tectal responses to visual stimulation in anurans: field potential, single neuron and behavioral analyses. Acta Biol Hung 47:89–111

    PubMed  CAS  Google Scholar 

  • Fan T-X, Weber AE, Pickard GE, Faber KM, Ariel M (1995) Visual responses and connectivity in the turtle pretectum. J Neurophysiol 73:2507–2521

    PubMed  CAS  Google Scholar 

  • Frost BJ, Nakayama K (1983) Single visual neurons encode opposing motion independent of direction. Science 220:774–775

    Google Scholar 

  • Giese MA (1999) Evidence for multi-functional interactions in early visual motion processing. Trends Neurosci 22:287–290

    Article  PubMed  CAS  Google Scholar 

  • Hodos W, Macko KA, Sommers DI (1982) Interactions between components of the avian visual system. Behav Brain Res 5:157–173

    Article  PubMed  CAS  Google Scholar 

  • Krauskopf J, Farell B (1990) Influence of color on the perception of coherent motion. Nature 348:328–331

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Fite KV, Montgomery NM, Wang SR (1996) Single-unit responses to whole-field visual stimulation in the pretectum of Rana Pipiens. Neurosci Lett 218:193–197

    Article  PubMed  CAS  Google Scholar 

  • Livingstone M, Hubel D (1988) Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240:740–749

    PubMed  CAS  Google Scholar 

  • Luksch H (2003) Cytoarchitecture of the avian optic tectum: neural substrate for cellular computation. Rev Neurosci 14:85–106

    PubMed  Google Scholar 

  • Luksch H, Roth G (1996) Pretecto-tectal interactions: effects of lesioning and stimulating the pretectum on field potentials in the optic tectum of salamanders in vitro. Neurosci Lett 217:137–140

    Article  PubMed  CAS  Google Scholar 

  • Luksch H, Kahl H, Wiggers W, Roth G (1998) Connectivity of the salamander pretectum: an in-vivo (whole-brain) intracellular tracing study. Cell Tissue Res 292:47–56

    Article  PubMed  CAS  Google Scholar 

  • Merigan WH, Maunsell JH (1993) How parallel are the primate visual pathways? Annu Rev Neurosci 16:369–402

    Article  PubMed  CAS  Google Scholar 

  • Muller JK, Nicholls JG, Stent GS (1981) Neurobiology of the Leech. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Roska B, Werblin F (2001) Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature 410:583–587

    Article  PubMed  CAS  Google Scholar 

  • Rousseeuw PJ, Leroy AM (2003) Robust regression and outlier detection. Wiley Interscience, New York

    Google Scholar 

  • Sun H-J, Zhao J, Southall TL, Xu B (2002) Contextual influences on the directional responses of tectal cells in the pigeon. Vis Neurosci 19:133–144

    Article  PubMed  Google Scholar 

  • Tsai HJ, Ewert J-P (1988) Influence of stationary and moving textured backgrounds on the response of visual neurons in toads (bufo bufo l). Brain Behav Evol 32:27–38

    PubMed  CAS  Google Scholar 

  • VanEssen DC, Anderson CH, Felleman DJ (1992) Information processing in the primate visual system – an integrated systems perspective. Science 255:419–423

    CAS  Google Scholar 

  • Vanegas H (ed) (1984) Comparative neurology of the optic tectum. Plenum, New York

    Google Scholar 

  • Wassle H (2004) Parallel processing in the mammalian retina. Nat Rev Neurosci 5:747–757

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Wessel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahani, A.S., Wessel, R. Iterative cooperation between parallel pathways for object and background motion. Biol Cybern 95, 393–400 (2006). https://doi.org/10.1007/s00422-006-0100-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0100-x

Keywords

Navigation