Skip to main content
Log in

See globally, spike locally: oscillations in a retinal model encode large visual features

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We show that coherent oscillations among neighboring ganglion cells in a retinal model encode global topological properties, such as size, that cannot be deduced unambiguously from their local, time-averaged firing rates. Whereas ganglion cells may fire similar numbers of spikes in response to both small and large spots, only large spots evoke coherent high frequency oscillations, potentially allowing downstream neurons to infer global stimulus properties from their local afferents. To determine whether such information might be extracted over physiologically realistic spatial and temporal scales, we analyzed artificial spike trains whose oscillatory correlations were similar to those measured experimentally. Oscillatory power in the upper gamma band, extracted on single-trials from multi-unit spike trains, supported good to excellent size discrimination between small and large spots, with performance improving as the number of cells and/or duration of the analysis window was increased. By using Poisson distributed spikes to normalize the firing rate across stimulus conditions, we further found that coincidence detection, or synchrony, yielded substantially poorer performance on identical size discrimination tasks. To determine whether size encoding depended on contiguity independent of object shape, we examined the total oscillatory activity across the entire model retina in response to random binary images. As the ON-pixel probability crossed the percolation threshold, which marks the sudden emergence of large connected clusters, the total gamma-band activity exhibited a sharp transition, a phenomena that may be experimentally observable. Finally, a reanalysis of previously published oscillatory responses from cat ganglion cells revealed size encoding consistent with that predicted by the retinal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso JM, Usrey WM, Reid RC (2001) Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. J Neurosci 21:4002–4015

    PubMed  CAS  Google Scholar 

  • Ariel M, Daw NW, Rader RK (1983) Rhythmicity in rabbit retinal ganglion cell responses. Vis Res 23:1485–1493

    Article  PubMed  CAS  Google Scholar 

  • Cohen E, Sterling P (1990) Convergence and divergence of cones onto bipolar cells in the central area of cat retina. Philos Trans R Soc Lond Ser B Biol Sci 330:323–328

    CAS  Google Scholar 

  • Dacey DM, Brace S (1992) A coupled network for parasol but not midget ganglion cells in the primate retina. Vis Neurosci 9:279–290

    Article  PubMed  CAS  Google Scholar 

  • De Carli F, Narici L, Canovaro P, Carozzo S, Agazzi E, Sannita WG (2001) Stimulus- and frequency-specific oscillatory mass responses to visual stimulation in man. Clin Electroencephalogr 32:145–151

    PubMed  CAS  Google Scholar 

  • Doiron B, Chacron MJ, Maler L, Longtin A, Bastian J (2003) Inhibitory feedback required for network oscillatory responses to communication but not prey stimuli. Nature 421:539–543

    Article  PubMed  CAS  Google Scholar 

  • Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley, New York

    Google Scholar 

  • Freed MA (2000) Rate of quantal excitation to a retinal ganglion cell evoked by sensory input. J Neurophysiol 83:2956–2966

    PubMed  CAS  Google Scholar 

  • Friedrich RW, Habermann CJ, Laurent G (2004) Multiplexing using synchrony in the zebrafish olfactory bulb. Nat Neurosci 7:862–871

    Article  PubMed  CAS  Google Scholar 

  • Frishman LJ, Saszik S, Harwerth RS, Viswanathan S, Li Y, Smith EL III, Robson JG, Barnes G (2000) Effects of experimental glaucoma in macaques on the multifocal ERG. Multifocal ERG in laser-induced glaucoma. Doc Ophthalmol 100:231–251

    CAS  Google Scholar 

  • Grimmett G (1999) Percolation. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hoshen J, Kopelman R (1976) Percolation and cluster distribution. I. cluster multiple labeling technique and critical concentration algorithm. Phys Rev B 14:3438–3445

    Article  CAS  Google Scholar 

  • Ishikane H, Gangi M, Honda S, Tachibana M (2005) Synchronized retinal oscillations encode essential information for escape behavior in frogs. Nat Neurosci 8:1087–1095

    Article  PubMed  CAS  Google Scholar 

  • Ishikane H, Kawana A, Tachibana M (1999) Short- and long-range synchronous activities in dimming detectors of the frog retina. Vis Neurosci 16:1001–1014

    Article  PubMed  CAS  Google Scholar 

  • Jacoby R, Stafford D, Kouyama N, Marshak D (1996) Synaptic inputs to ON parasol ganglion cells in the primate retina. J Neurosci 16:8041–8056

    PubMed  CAS  Google Scholar 

  • Kenyon GT, Harvey NR, Stephens GJ, Theiler J (2004a) Dynamic segmentation of gray-scale images in a computer model of the mammalian retina. In: Tescher AG (ed). Proceedings of SPIE: applications of digital image processing XXVII. Denver 5558: 1–12

  • Kenyon GT, Marshak DW (1998) Gap junctions with amacrine cells provide a feedback pathway for ganglion cells within the retina. Proc R Soc Lond B Biol Sci 265:919–925

    Article  CAS  Google Scholar 

  • Kenyon GT, Moore B, Jeffs J, Denning KS, Stephens GJ, Travis BJ, George JS, Theiler J, Marshak DW (2003) A model of high-frequency oscillatory potentials in retinal ganglion cells. Vis Neurosci 20:465–480

    Article  PubMed  Google Scholar 

  • Kenyon GT, Theiler J, George JS, Travis BJ, Marshak DW (2004b) Correlated firing improves stimulus discrimination in a retinal model. Neural Comput 16:2261–2291

    Article  Google Scholar 

  • Kenyon GT, Travis BJ, Theiler J, George JS, Stephens GJ, Marshak DW (2004c) Stimulus-specific oscillations in a retinal model. IEEE Trans Neural Netw 15:1083–1091

    Article  Google Scholar 

  • Laufer M, Verzeano M (1967) Periodic activity in the visual system of the cat. Vision Res 7:215–229

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Conde S, Macknik SL, Hubel DH (2004) The role of fixational eye movements in visual perception. Nat Rev Neurosci 5:229–240

    Article  PubMed  CAS  Google Scholar 

  • Meister M, Berry MJ II (1999) The neural code of the retina. Neuron 22:435–450

    Article  PubMed  CAS  Google Scholar 

  • Miller JA, Denning KS, Geroge JS, Marshak DW, Kenyon GT (2006) A high frequency resonance in the responses of retinal ganglion cells to rapidly modulated stimuli: A computer model. Vis Neurosci 23(5) (in press)

  • Neuenschwander S, Castelo-Branco M, Singer W (1999) Synchronous oscillations in the cat retina. Vis Res 39:2485–2497

    Article  PubMed  CAS  Google Scholar 

  • Neuenschwander S, Singer W (1996) Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature 379:728–732

    Article  PubMed  CAS  Google Scholar 

  • Nirenberg S, Carcieri SM, Jacobs AL, Latham PE (2001) Retinal ganglion cells act largely as independent encoders. Nature 411:698–701

    Article  PubMed  CAS  Google Scholar 

  • O’Brien BJ, Isayama T, Richardson R, Berson DM (2002) Intrinsic physiological properties of cat retinal ganglion cells. J Physiol 538:787–802

    Article  PubMed  CAS  Google Scholar 

  • Schnitzer MJ, Meister M (2003) Multineuronal firing patterns in the signal from eye to brain. Neuron 37:499–511

    Article  PubMed  CAS  Google Scholar 

  • Shadlen MN, Movshon JA (1999) Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron 24:67–77, 111–125

    Article  PubMed  CAS  Google Scholar 

  • Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18:3870–3896

    PubMed  CAS  Google Scholar 

  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Ann Rev Neurosci 18:555–586

    Article  PubMed  CAS  Google Scholar 

  • Steinberg RH (1966) Oscillatory activity in the optic tract of cat and light adaptation. J Neurophysiol 29:139–156

    PubMed  CAS  Google Scholar 

  • Stephens GS, Neuenschwander S, George JS, Theiler J, Marshak DW, Singer W, Kenyon GT (2003) See globally, spike locally: retinal oscillations encode large contiguous features. In: Society for Neuroscience Abstracts.

  • Usrey WM, Reppas JB, Reid RC (1999) Specificity and strength of retinogeniculate connections. J Neurophysiol 82:3527–3540

    PubMed  CAS  Google Scholar 

  • Vaney DI (1990) The mosaic of amacrine cells in the mammalian retina. In: Osborne NN, Chader GJ (eds)Progress in retinal research. Pergamon Press, Oxford, pp 49–100

    Google Scholar 

  • Vaney DI (1994) Patterns of neuronal coupling in the retina. Prog Retin Eye Res 13:301–355

    Article  Google Scholar 

  • Wachtmeister L (1998) Oscillatory potentials in the retina: what do they reveal. Prog Retin Eye Res 17:485–521

    Article  PubMed  CAS  Google Scholar 

  • Wachtmeister L, Dowling JE (1978) The oscillatory potentials of the mudpuppy retina. Invest Ophthalmol Vis Sci 17:1176–1188

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garrett T. Kenyon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephens, G.J., Neuenschwander, S., George, J.S. et al. See globally, spike locally: oscillations in a retinal model encode large visual features. Biol Cybern 95, 327–348 (2006). https://doi.org/10.1007/s00422-006-0093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0093-5

Keywords

Navigation