Skip to main content

Advertisement

Log in

A stochastic limit cycle oscillator model of the EEG

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We present an empirical model of the electroencephalogram (EEG) signal based on the construction of a stochastic limit cycle oscillator using Itô calculus. This formulation, where the noise influences actually interact with the dynamics, is substantially different from the usual definition of measurement noise. Analysis of model data is compared with actual EEG data using both traditional methods and modern techniques from nonlinear time series analysis. The model demonstrates visually displayed patterns and statistics that are similar to actual EEG data. In addition, the nonlinear mechanisms underlying the dynamics of the model do not manifest themselves in nonlinear time series analysis, paralleling the situation with real, non-pathological EEG data. This modeling exercise suggests that the EEG is optimally described by stochastic limit cycle behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abarbanel HDI (1996) Analysis of observed chaotic data. Springer, Berlin Heidelberg New York

  2. Arnhold J, Grassberger P, Lehnertz K, Elger C (1999) A robust method for detecting interdependencies: Application to intracranially recorded EEG. Physica D 134:419–430

    Google Scholar 

  3. Babloyantz A (1985) Strange attractors in the dynamics of brain activity. In: Haken H (ed) Complex systems operational approaches. Springer, Berlin Heidelberg New York

  4. Babloyantz A, Destexhe A (1986) Low dimensional chaos in an instance of epilepsy. Proc Natl Acad Sci USA 83:3513–3517

    Google Scholar 

  5. Barlow JS (1993) The electroencephalogram: its patterns and origins. MIT Press, Cambridge, MA

  6. Başar E (1990) Chaos in brain function. Springer, Berlin Heidelberg New York

  7. Burke D (2003) An extensible C++ framework for stochastic differential equations. C/C++ Users J 21:12–17

  8. Breakspear M, Terry JR (2002a) Detection and description of non-linear interdependence in normal multichannel human EEG data. Clin Neurophysiol 113:735–753

    Google Scholar 

  9. Breakspear M, Terry JR (2002b) Nonlinear interdependence in neural systems: motivation, theory, and relevance. Int J Neurosci 112:1263–1284

    Google Scholar 

  10. Casdagli M (1991) Chaos and deterministic versus stochastic non-linear modelling. J R Stat Soc B 54:303–328

    Google Scholar 

  11. Casdagli MC, Iasemidis LD, Savit RS, Gilmore RL, Roper SN, Sackellares JC (1997) Non-linearity in invasive EEG recordings from patients with temporal lope epilepsy. Electroencephalogr Clin Neurophysiol 102:98–105

    Google Scholar 

  12. Dewan EM (1964) Nonlinear oscillations and electroencephalography. J Theor Biol 7:141–159

    Google Scholar 

  13. Dumermuth G, Molinari L (1987) Spectral analysis of EEG background activity. In: Gevins AS, Remond A (eds) Methods of analysis of brain electrical and magnetic signals. EEG Handbook. Elsevier, Amsterdam

  14. Freeman WJ (1975) Mass action in the nervous system. Academic, New York

  15. Freeman WJ (2000) Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands. J Neurosci Methods 95:111–121

    Google Scholar 

  16. Gard TC (1988) Introduction to stochastic differential equations. Marcel Dekker, New York

  17. Gradisek J, Siegert S, Freidrich R, Grabec I (2000) Analysis of time series from stochastic processes. Phys Rev E 62:3146–3155

    Google Scholar 

  18. Grassberger P, Procaccia I (1983) Characterisation of strange attractors. Phys Rev Lett 50:346

    Google Scholar 

  19. Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, Berlin Heidelberg New York

  20. Hernández JL, Valdés PA, Vila P (1996) EEG spike and wave modelled by a stochastic limit cycle. Neuroreport 7:2246–2250

    Google Scholar 

  21. Kantz H, Schreiber T (1997) Nonlinear time series analysis. Cambridge University Press, Cambridge, UK

  22. Kloeden PE, Platen E (1999) Numerical solution of stochastic differential equations. Springer, Berlin Heidelberg New York

  23. Kugiumtzis D (2001) On the reliability of the surrogate data test for nonlinearity in the analysis of noisy time series. Int J Bifurcat Chaos 11:1881–1896

    Google Scholar 

  24. La Salle J, Lefschetz S (1961) Stability by liapunov’s direct method with applications. Academic, New York

  25. Lehnertz K, Arnhold J, Grassberger P, Elger CE (1999) In: Proceedings of the workshop on chaos in brain, Bonn, Germany

  26. LeVan Quyen M, Martinerie J, Adam C, Varela F (1999) Nonlinear analyses of interictal EEG map the interdependencies in human focal epilepsy. Physica D 127:250–266

  27. Lopes Da Silva F, Hoeks A, Smits H, Zetterberg LH (1974) Model of brain rhythmic activity. Kybernetik 15:27–37

  28. Niedermeyer E, Lopes da Silva F (1999) Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams and Wilkins, Baltimore

  29. Nunez PL (1995) Neocortical dynamics and human brain rhythms. Oxford University Press, New York

  30. Nunez PL (2000) Toward a quantitative description of large-scale neocortical dynamic function and EEG. Behav Brain Sci 23:371–437

    Google Scholar 

  31. Øksendal B (1998) Stochastic differential equations: an introduction with applications. Universitext, Springer, Berlin Heidelberg New York

  32. Pardey J, Roberts S, Tarassenko L (1996) A review of parametric modelling techniques for EEG analysis. Med Eng Phys 18:2–11

    Google Scholar 

  33. Pijn JP, Van Neerven J, Noest A, Lopes da Silva FH (1991) Chaos or noise in EEG signals: dependence on state and brain site. Electroencephalogr Clin Neurophysiol 79:371–381

    Google Scholar 

  34. Pritchard WS, Duke DW (1992) Measuring chaos in the brain: a tutorial review of nonlinear dynamical EEG analysis. Int J Neurosci 67:31–80

    Google Scholar 

  35. Pritchard WS, Duke DW, Krieble KK (1995) Dimensional analysis of resting EEG: II. surrogate data testing indicates nonlinearity but not low-dimensional chaos. Psychophysiology 32:486–491

    Google Scholar 

  36. Putten van MJAM, Stam CJ (2001) Is the EEG really chaotic in hypsarrhythmia? IEEE Eng Med Biol 20:72–79

    Google Scholar 

  37. Robinson PA, Wright JJ, Rennie CJ (1998) Synchronous oscillations in the cerebral cortex. Phys Rev E 57:4578–4588

    Google Scholar 

  38. Robinson PA, Rennie CJ, Wright JJ, Bahramali H, Gordon E, Rowe DL (2001) Prediction of electroencephalographic spectra from neurophysiology. Phys Rev E 63:1–18

    Google Scholar 

  39. Rombouts SARB, Keunen RWM, Stam CJ (1995) Investigation of nonlinear structure in multichannel EEG. Phys Lett A 202:352–358

    Google Scholar 

  40. Rotterdam van A, Lopes da Silva FH, van den Ende J, Viergever MA, Hermans AJ (1982) A model of spatio-temporal characteristics of the alpha rhythm. Bull Math Biol 44:283–305

    Google Scholar 

  41. Schreiber T, Schmitz A (2000) Surrogate time series. Physica D 142:346–382

    Google Scholar 

  42. Siegert S, Friedrich R, Peinke J (1998) Analysis of data sets of stochastic systems. Phys Lett A 243:275–280

    Google Scholar 

  43. Stam CJ, Pijn JPM, Suffczynski P, Lopes da Silva FH (1999) Dynamics of the human alpha rhythm: evidence for nonlinearity? Clin Neurphysiol 110:1801–1813

    Google Scholar 

  44. Theiler J (1986) Spurious dimensions from correlation algorithms applied to limited time-series data. Phys Rev A34:2427

    Google Scholar 

  45. Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58:77–94

    Google Scholar 

  46. Theiler J (1995) On the evidence for low-dimensional chaos in an epileptic electroencephalogram. Phys Lett A 196:335–341

    Google Scholar 

  47. Theiler J, Rapp PE (1996) Re-examination of the evidence for low-dimensional, nonlinear structure in the human electroencephalogram. Electroencephalogr Clin Neurophysiol 98:213–222

    Google Scholar 

  48. Theiler J, Eubank S, Longtin A, Galdrikan B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate. Physica D 58:77–94

    Google Scholar 

  49. Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12:1–24

    Google Scholar 

  50. Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13:55–80

    Google Scholar 

  51. Wright JJ, Rennie CJ, Lees GJ, Robinson PA, Bourke PD, Chapman CL, Gordon E, Rowe DL (2003) Simulated electrocortical activity at microscopic, mesoscopic, and global states. Neuropsychopharmacology 28:580–593

    Google Scholar 

  52. Zetterberg LH (1977) Means and methods for processing of physiological signals with emphasis on EEG analysis. In: Lawrence JH (ed) Advances in biology and medical physics, vol 16. Academic, New York, pp 41–91

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Burke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burke, D., de Paor, A. A stochastic limit cycle oscillator model of the EEG. Biol. Cybern. 91, 221–230 (2004). https://doi.org/10.1007/s00422-004-0509-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-004-0509-z

Keywords

Navigation