Skip to main content
Log in

The effects of a caffeine containing pre-workout supplement on β2-adrenergic and MAPK signaling during resistance exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Aim

The acute myocellular responses of caffeine supplementation during resistance exercise (RE) have not been investigated. β2-Adrenergic receptors (β2AR) may be a target of the stimulatory effects of caffeine and stimulate bioenergetic pathways including protein kinase A (PKA), and mitogen-activated protein kinases (MAPK).

Purpose

Elucidate the effects of pre-workout supplementation on signaling responses to an acute RE bout.

Methods

In a randomized, counter-balanced, double-blind, placebo-controlled, within-subject crossover study, ten resistance-trained males (mean ± SD; age = 22 ± 2.4 years, height = 175 ± 7 cm, body mass = 84.1 ± 11.8 kg) consumed a caffeine containing multi-ingredient pre-workout supplement (SUPP) or color and flavor matched placebo (PL) 60 min prior to an acute RE bout of barbell back squats. Pre- and post-exercise muscle biopsies were analyzed for the phosphorylation (p-) of β2AR, PKA, and MAPK (ERK, JNK, p38). Epinephrine was determined prior to supplementation (baseline; BL), after supplementation but prior to RE (PRE), and immediately after RE (POST).

Results

Epinephrine increased at PRE in SUPP (mean ± SE: 323 ± 34 vs 457 ± 68 pmol/l; p = 0.028), and was greatest at POST in the SUPP condition compared to PL (5140 ± 852 vs 2862 ± 498 pmol/l; p = 0.006). p-β2AR and p-MAPK increased post-exercise (p < 0.05) with no differences between conditions (p > 0.05). Pearson correlations indicated there was a relationship between epinephrine and p-β2AR in PL (r = − 0.810; p = 0.008), and p-β2AR and ERK in SUPP (r = 0.941; p < 0.001).

Conclusion

Consumption of a caffeine containing pre-workout supplement improves performance, possibly through increases in pre-exercise catecholamines. However, the acute myocellular signaling responses were largely similar post-exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

1RM:

One repetition maximum

β2-AR:

β2-Adrenergic receptors

ERK:

Extracellular signaling-regulated kinase 1/2

ELISA:

Enzyme-linked immunosorbent assay

IR:

Infrared

JNK:

C-Jun NH2-terminal kinase

MAPK:

Mitogen-activated protein kinase

PKA:

Protein kinase A

PL:

Placebo

PVDF:

Polyvinylidene difluoride

RE:

Resistance exercise

PMANOVA:

Repeated-measures analysis of variance

RT:

Resistance training

SDS:

Sodium dodecyl sulfate

SUPP:

Supplementation

TBS:

Tris-buffered saline

TBST:

Tris-buffered saline plus Tween 20

References

  • Allen DG, Westerblad H (1995) The effects of caffeine on intracellular calcium, force and the rate of relaxation of mouse skeletal muscle. J Physiol 487(Pt 2):331–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baechle TR, Earle RW (2008) Resistance training and spotting techniques. In: Baechle TR, Earle RW (eds) Essentials of strength training and conditioning. Human Kinetics, Champaign, IL, pp 326–376

    Google Scholar 

  • Bazzucchi I, Felici F, Montini M, Figura F, Sacchetti M (2011) Caffeine improves neuromuscular function during maximal dynamic exercise. Muscle Nerve 43:839–844

    Article  CAS  PubMed  Google Scholar 

  • Beck TW, Housh TJ, Schmidt RJ, Johnson GO, Housh DJ, Coburn JW, Malek MH (2006) The acute effects of a caffeine-containing supplement on strength, muscular endurance, and anaerobic capabilities. J Strength Cond Res 20(3):506–510

    PubMed  Google Scholar 

  • Boppart MD, Aronson D, Gibson L, Roubenoff R, Abad LW, Bean J, Goodyear LJ, Fielding RA (1999) Eccentric exercise markedly increases c-Jun NH2-terminal kinase activity in human skeletal muscle. J Appl Physiol 87:1668–1673

    Article  CAS  PubMed  Google Scholar 

  • Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14(5):377–381

    Article  CAS  PubMed  Google Scholar 

  • Bowman SL, Shiwarski DJ, Puthenveedu MA (2016) Distinct G Protein-coupled receptor recycling pathways allow spatial control of downstream G protein signaling. J Cell Biol 214(7):797–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford LA, Fry AC, Cabarkapa D, Lane MT, Andre MJ (2020) Internal consistency of two testing modalities for barbell velocity and power during the back squat. J Adv Sport Tech 4(1):114–123

    Google Scholar 

  • Burd NA, Holwerda AM, Selby KC, West DWD, Staples AW, Cain NE, Cashaback JGA, Potvin JR, Baker SK, Phillips SM (2010) Resistance exercise volume affects myofibrillar protein synthesis and anabolic signaling molecule phosphorylation in young men. J Physiol 588(16):3119–3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75(1):50–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis JK, Green JM (2009) Caffeine and anaerobic performance: ergogenic value and mechanisms of action. Sports Med 39(10):813–832

    Article  CAS  PubMed  Google Scholar 

  • Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37(2):247–248

    Article  CAS  PubMed  Google Scholar 

  • Duncan MJ, Lyons M, Hankey J (2009) Placebo effects of caffeine on short-term resistance exercise to failure. Int J Sports Physiol Perform 4(2):244–253

    Article  PubMed  Google Scholar 

  • Duncan MJ, Oxford SW (2012) Acute caffeine ingestion enhances performance and dampens muscle pain following resistance exercise to failure. J Sports Med Phys Fitness 52(3):280–285

    CAS  PubMed  Google Scholar 

  • Duncan MJ, Smith M, Cook K, James RS (2012) The acute effect of a caffeine-containing energy drink on mood state, readiness to invest effort, and resistance exercise to failure. J Strength Cond Res 26(10):2858–2865

    Article  PubMed  Google Scholar 

  • Evans WJ, Phinney SD, Young VR (1982) Suction applied to a muscle biopsy maximizes sample size. Med Sci Sport Exerc 14(1):101–102

    CAS  Google Scholar 

  • Fan X, Gu X, Zhao R, Zheng Q, Li L, Yang W, Ding L, Xue F, Fan J, Gong Y, Wang Y (2016) Cardiac B2-adrenergic receptor phosphorylation at Ser355/356 regualtes receptor internalization and functional resensitization. PLoS ONE 11(8):e0161373. https://doi.org/10.1371/journalprone.0161373

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraser IDC, Cong M, Kim J, Rollins EN, Daaka Y, Lefkowitz RJ, Scott JD (2000) Assembly of an A kinase-anchoring protein-B2-adrenergic receptor complex facilitates receptor phosphorylation and signaling. Curr Biol 10(7):409–412

    Article  CAS  PubMed  Google Scholar 

  • Fry AC, Schilling BK, Weiss LW, Chiu LZF (2006) β2 Adrenergic receptor downregulation and performance decrements during high-intensity resistance exercise overtraining. J Appl Physiol 101:1664–1672

    Article  CAS  PubMed  Google Scholar 

  • Galpin AJ, Fry AC, Nicoll JX, Moore CA, Schilling BK, Thomason DB (2016) Resting extracellular signal-regulated protein kinase 1/2 expression following a continuum of chronic resistance exercise training paradigms. Res Sports Med 24:298–303

    Article  PubMed  Google Scholar 

  • Gagnon AW, Kallal L, Benovic JL (1998) Role of Clatherin-mediated endocytosis in agonist-induced down-regulation the B2-Adrenergic Receptor. J Biol Chem 273(12):6976–6981

    Article  CAS  PubMed  Google Scholar 

  • Gehlert S, Suhr F, Gutsche K, Willkomm L, Kern J, Jacko D, Knicker A, Schiffer T, Wackerhage H, Bloch W (2015) High force development augments skeletal muscle signalling in resistance exercise modes equalized for time under tension. Pflugers Arch 467:1343–1356

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez AM, Walsh AL, Ratamess NA, Kang J, Hoffman JR (2011) Effect of a pre-workout energy supplement on acute multi-joint resistance exercise. J Sports Sci Med 10(2):261–266

    PubMed  PubMed Central  Google Scholar 

  • Graham TE, Battram DS, Dela F, El-Sohemy A, Thong FS (2008) Does caffeine alter muscle carbohydrate and fat metabolism during exercise? Appl Physiol Nutr Metab 33(6):1311–1318

    Article  CAS  PubMed  Google Scholar 

  • Haddad F, Adams GR (2004) Inhibition of MAPK/ERK kinase prevents IGF-1-induced hypertrophy in rat muscles. J Appl Physiol 96:203–210

    Article  CAS  PubMed  Google Scholar 

  • Hawley JA, Hargreaves M, Joyner MJ, Zierath JR (2014) Integrative biology of exercise. Cell 159:738–749

    Article  CAS  PubMed  Google Scholar 

  • Hoffman JR, Ratamess NA, Ross R, Shenklin M, Kang J, Faigenbaum AD (2008) Effect of a pre-exercise energy supplement on the acute hormonal response to resistance exercise. J Strength Cond Res 22(3):874–882

    Article  PubMed  Google Scholar 

  • Holm L, van Hall G, Rose AJ, Miller BF, Doessing S, Richter EA, Kjaer M (2010) Contraction intensity and feeding affect collagen and myofibrillar protein synthesis rates differently in human skeletal muscle. An J Physiol Endocrinol Metab 298(2):E257–E269

    Article  CAS  Google Scholar 

  • Hostrup M, Kalsen A, Ørtenblad N, Juel C, Mørch K, Rzeppa S, Karlsson S, Backer V, Bangsbo J (2014) B2-Adrenergic stimulation enhances Ca2+ release and contractile properties of skeletal muscles, and counteracts exercise-induced reductions in Na+ -K+ -ATPase Vmax in trained men. J Physiol 592(24):5445–5459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson GM, Green JM, Bishop PA, Richardson MT (2008) Effects of caffeine and aspirin on light resistance training performance, RPE, and pain perception. J Strength Cond Res 22(6):1950–1957

    Article  PubMed  Google Scholar 

  • Hulmi JJ, Walker S, Athiainen JP, Nyman K, Kraemer WJ, Häkkinen K (2012) Molecular signaling in muscle is affected by the specificity of the resistance exercise protocol. Scand J Med Sci Sports 22(2):240–248

    Article  CAS  PubMed  Google Scholar 

  • Hurley CF, Hatfield DL, Riebe DA (2013) The effect of caffeine ingestion on delayed onset muscle soreness. J Strength Cond Res 27(11):3101–3109

    Article  PubMed  Google Scholar 

  • Jäger R, Kerksick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM, Purpura M, Ziegenfuss TN, Ferrando AA, Arent SM, Smith-Ryan AE, Stout JR, Arciero PJ, Ormsbee MJ, Taylor LW, Wilborn CD, Kalman DS, Kreider RB, Willoughby DS, Hoffman JR, Krzykowski JL, Antonio J (2017) International Society of Sports Nutrition Position Stand: protein and exercise. J Int Soc Sports Nutr 14:20. https://doi.org/10.1186/s12970-017-0177-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khurana A, Dey CS (2004) Involvement of c-Jun N-terminal kinase activities in skeletal muscle differentiation. J Muscle Res Cell Motil 25(8):645–655

    Article  CAS  PubMed  Google Scholar 

  • Kraemer WJ, Ratamess NA, Fry AC, French DN (2006) Strength Training: Development and evaluation of methodology. In: Maud PJ, Foster C (eds) Physiological assessment of human fitness. Human Kinetics, Champaign, IL, pp 119–150

    Google Scholar 

  • Lessard SJ, MacDOnald TL, Pathak P, Han MS, Coffey VG, Edge J, Rivas DA, Hirshman MF, Davis RJ, Goodyear LJ (2018) JNK regulates muscle remodeling via myostatin/SMAD inhibition. Nat Commun 9(1):3030

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu R, Ramani B, Soto D, De Arcangelis V, Xiang Y (2009) Agonist dose-dependent phosphorylation by protein kinase A and G-protein-coupled receptor kinase reregulates B2-adrenoceptor coupling to Gi proteins in cardiomyocytes. J Biol Chem 284(47):32279–32287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohse MJ, Nikolaev VO, Hein P, Hoffmann C, Vilardaga JP, Bünemann M (2008) Optical techniques to analyze real-time activation and signaling of G-protein-coupled receptors. Trends Pharmacol Sci 29(3):159–165. https://doi.org/10.1016/j.tips.2007

    Article  CAS  PubMed  Google Scholar 

  • Long YC, Widegren U, Zierath JR (2004) Exercise-induced mitogen-activated protein kinase signaling in skeletal muscle. Proc Nutr Soc 63(2):227–232

    Article  CAS  PubMed  Google Scholar 

  • Lowery RP, Joy JM, Dudeck JE, Oliveira de Souza E, McCleary SA, Wells S, Wildman R, Wilson JM (2013) Effects of 8 weeks of Xpand® 2X pre workout supplementation on skeletal muscle hypertrophy, lean body mass, and strength in resistance trained males. J Int Soc Sports Nutr 10(1):44. https://doi.org/10.1186/1550-2783-10-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martineau LC, Gardiner PF (2001) Insight into skeletal muscle mechanotransduction: MAPK activation is quantitatively related to tension. J Appl Physiol 91(2):693–702

    Article  CAS  PubMed  Google Scholar 

  • Murphy RJL, Gardiner PF, Rousseau G, Bouvier M, Béliveau L (1997) Chronic B-blockade increases skeletal muscle B2-adrenergic receptor density and enhances contractile force. J Appl Physiol 83(2):459–465

    Article  CAS  PubMed  Google Scholar 

  • Napoli R, Gibson L, Hirshman MF, Boppart MD, Dufresne SD, Horton ES, Goodyear LJ (1998) Epinephrine and insulin stimulate different mitogen-activated protein kinase signaling pathways in rat skeletal muscle. Diabetes 47(10):1549–1554

    Article  CAS  PubMed  Google Scholar 

  • Nicoll JX, Fry AC, Mosier EM (2021) Androgen and glucocorticoid receptor phosphorylation following resistance exercise and pre-workout supplementation. Steroids 172:108859

    Article  CAS  PubMed  Google Scholar 

  • Nicoll JX, Fry AC, Mosier EM, Olsen LA, Sontag SA (2019) MAPK, androgen, and glucocorticoid receptor phosphorylation following high-frequency resistance exercise non-functional overreaching. Eur J Appl Physiol 119(10):2237–2253

    Article  CAS  PubMed  Google Scholar 

  • Nicoll JX, Fry AC, Galpin AJ, Sterczala AJ, Thomason DB, Moore CA, Weiss LW, Chiu LZF (2016) Changes in resting mitogen-activated protein kinases following resistance exercise overreaching and overtraining. Eur J Appl Physiol 116:2401–2413

    Article  CAS  PubMed  Google Scholar 

  • Robertson D, Frolich JC, Carr RK, Watson HT, Hollifield JW, Shand D, Oates HA (1978) Effects of caffeine on plasma renin activity, catecholamines, and blood pressure. N Engl J Med 298:181–186

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Shirato K, Tachiyashiki K, Imaizumi K (2011) Muscle plasticity and β2-adrenergic receptors: adaptive responses of β2-adrenergic receptor expression to muscle hypertrophy and atrophy. Biomed Biotechnol 2011:729598. https://doi.org/10.1155/2011/729598

    Article  CAS  Google Scholar 

  • Schwarz NA, McKinley-Barnard SK, Blahnik ZJ (2019) Effect of Bang Pre-workout Master Blaster combined with four weeks of resistance training on lean body mass, maximal strength, microRNA expression, and serum IGF-1 in men: a randomized, double-blind, placebo-controlled trial. J Int Soc Sports Nutr 16(1):54

    Article  PubMed  PubMed Central  Google Scholar 

  • Shelmadine B, Cooke M, Buford T, Hudson G, Redd L, Leutholtz B, Willoughby DS (2009) Effects of 28 days of resistance exercise and consuming a commercially available pre-workout supplement, NO-Shotgun(R), on body composition, muscle strength and mass, markers of satellite cell activation, and clinical safety markers in males. J Int Soc Sports Nutr 6:16. https://doi.org/10.1186/1550-2783-6-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Scheffler JM, Zeng C, Pleitner JM, Hannon KM, Grant AL, Gerrard DE (2009) Mitogen-activated protein kinase signaling is necessary for maintenance of skeletal muscle mass. Am J Physiol Cell Physiol 296:C1040–C1048

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Zeng C, Ricome A, Hannon KM, Grant AL, Gerrard DE (2007) Extracellular signal-regulated kinase pathway is differentially involved in beta-agonist-induced hypertrophy in slow and fast muscles. Am J Physiol Cell Physiol 292:C1681–C1689

    Article  CAS  PubMed  Google Scholar 

  • Spiering BA, Kraemer WJ, Anderson JM, Armstrong LE, Nindl BC, Volek JS, Maresh CM (2008) Resistance exercise biology: manipulation of resistance exercise programme variables determines the responses of cellular and molecular signalling pathways. Sports Med 38:527–540

    Article  PubMed  Google Scholar 

  • Staron RS (1991) Correlation between myofibrillar ATPase activity and myosin heavy chain composition in single human muscle fibers. Histochemistry 96(1):21–24

    Article  CAS  PubMed  Google Scholar 

  • Steinberg RA, Cauthron RD, Symcox MM, Shunthos H (1993) Autoactivation of catalytic (C alpha) subunit of cyclic AMP- dependent protein kinase by phosphorylation of threonine 197. Mol Cell Biol 13(4):2332–2341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sterczala AJ, Fry AC, Chiu LZF, Schilling BK, Weiss LW, Nicoll JX (2017) β2-Adrenergic receptor maladaptations to high power resistance exercise overreaching. Human Physiol (fiziologiya Cheloveka) 43(4):446–454. https://doi.org/10.1134/S0362119717040144

    Article  CAS  Google Scholar 

  • Watt MJ, Stellingwerff T, Heigenhauser GJ, Spriet LL (2003) Effects of plasma adrenaline on hormone-sensitive lipase at rest and during moderate exercise in human skeletal muscle. J Physiol 550(Pt 1):325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Woodring PJ, Bhakta KS, Tamura K, Wen F, Feramisco JR, Karin M, Wang YG, Puri PL (2000) p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps. Mol Cell Biol 20(11):3951–3964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamir E, Lommerse PHM, Kinkhabwala A, Grecco HE, Bastiaene PIH (2009) Florescence fluctuations of quantum-dot sensors capture intracellular protein interaction dynamics. Nat Methods 7(4):295–300

    Article  Google Scholar 

Download references

Funding

This study was funded through an educational research grant from the International Society of Sport Nutrition, and MusclePharm.

Author information

Authors and Affiliations

Authors

Contributions

JXN and ACF: study design and conceptualization. JXN, ACF, and EMM: data collection and analysis. JXN: writing. JXN, ACF, and EMM: revision. JXN and ACF: funding.

Corresponding author

Correspondence to Justin X. Nicoll.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Communicated by William J. Kraemer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicoll, J.X., Fry, A.C. & Mosier, E.M. The effects of a caffeine containing pre-workout supplement on β2-adrenergic and MAPK signaling during resistance exercise. Eur J Appl Physiol 123, 585–599 (2023). https://doi.org/10.1007/s00421-022-05085-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-022-05085-0

Keywords

Navigation