Skip to main content
Log in

Bilateral deficit in maximal force production

  • Invited Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The bilateral deficit phenomenon, characterized by a reduction in the amount of force from a single limb during maximal bilateral actions, has been shown in various movement tasks, contraction types and different populations. However, bilateral deficit appears to be an inconsistent phenomenon, with high variability in magnitude and existence, and seems to be plastic, as bilateral facilitation has also been shown to occur. Furthermore, many mechanisms underlying this phenomenon have been proposed over the years, but still remain largely unknown. The purpose of this review was to clarify and critically discuss some of the important issues relevant to bilateral deficit. The main findings of this review were: (1) bilateral deficit does not seem to be contraction-type dependent; however, it is more consistent in dynamic compared to isometric contractions; (2) postural stabilization requirements and/or ability to use counterbalances during unilateral actions seem to influence the expression of bilateral deficit to a great extent; strong evidence has been provided for higher-order neural inhibition as a possible mechanism, but requires further exploration using a lower limb model; biomechanical mechanisms, such as differences in shortening velocity between contraction modes and displacement of the force–velocity curve, seem to underlie bilateral deficit in ballistic and explosive contractions; (3) task familiarity has a large influence on bilateral deficit and thus adequate testing specificity is warranted in training/cross-sectional experiments; (4) the literature investigating the relationship between bilateral deficit and athletic performance and injury remains scarce; hence, further research in this area is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(adapted from Nijem and Galpin 2014)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EMG:

Electromyography

MU:

Motor unit

MVC:

Maximal voluntary contraction

References

  • Aagaard P, Simonsen EB, Andersen JL et al (2002) Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol 92:2309–2318. doi:10.1152/japplphysiol.01185.2001

    Article  PubMed  Google Scholar 

  • Archontides C, Fazey JA (1993) Inter-limb interactions and constraints in the expression of maximum force: a review, some implications and suggested underlying mechanisms. J Sports Sci 11:145–158. doi:10.1080/02640419308729978

    Article  CAS  PubMed  Google Scholar 

  • Armstrong C, Oldham J (1999) A comparison of dominant and non-dominant hand strengths. J Hand Surg J Br Soc Surg Hand 24:421–425. doi:10.1054/jhsb.1999.0236

    Article  CAS  Google Scholar 

  • Aune TK, Aune MA, Ettema G, Vereijken B (2013) Comparison of bilateral force deficit in proximal and distal joints in upper extremities. Hum Mov Sci 32:436–444. doi:10.1016/j.humov.2013.01.005

    Article  CAS  PubMed  Google Scholar 

  • Beaulé V, Tremblay S, Théoret H (2012) Interhemispheric control of unilateral movement. Neural Plast 2012:628716. doi:10.1155/2012/627816

    Google Scholar 

  • Becker R, Awiszus F (2001) Physiological alterations of maximal voluntary quadriceps activation by changes of knee joint angle. Muscle Nerve 24:667–672

    Article  CAS  PubMed  Google Scholar 

  • Behm DG, Whittle J, Button D, Power K (2002) Intermuscle differences in activation. Muscle Nerve 25:236–243

    Article  CAS  PubMed  Google Scholar 

  • Behm DG, Power KE, Drinkwater EJ (2003) Muscle activation is enhanced with multi- and uni-articular bilateral versus unilateral contractions. Can J Appl Physiol 28:38–52

    Article  PubMed  Google Scholar 

  • Behm DG, Cavanaugh T, Quigley P et al (2016) Acute bouts of upper and lower body static and dynamic stretching increase non-local joint range of motion. Eur J Appl Physiol 116:241–249. doi:10.1007/s00421-015-3270-1

    Article  PubMed  Google Scholar 

  • Belanger AY, McComas AJ (1981) Extent of motor unit activation during effort. J Appl Physiol Respir Environ Exerc Physiol 51:1131–1135

    CAS  PubMed  Google Scholar 

  • Beurskens R, Gollhofer A, Muehlbauer T et al (2015) Effects of heavy-resistance strength and balance training on unilateral and bilateral leg strength performance in old adults. PLoS One 10:e0118535. doi:10.1371/journal.pone.0118535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bobbert MF, Casius LJR (2005) Is the effect of a countermovement on jump height due to active state development? Med Sci Sports Exerc 37:440–446

    Article  PubMed  Google Scholar 

  • Bobbert MF, Gerritsen KG, Litjens MC, Van Soest AJ (1996) Why is countermovement jump height greater than squat jump height? Med Sci Sports Exerc 28:1402–1412

    Article  CAS  PubMed  Google Scholar 

  • Bobbert MF, de Graaf WW, Jonk JN, Casius LJR (2006) Explanation of the bilateral deficit in human vertical squat jumping. J Appl Physiol 100:493–499. doi:10.1152/japplphysiol.00637.2005

    Article  PubMed  Google Scholar 

  • Botton C, Radaelli R, Wilhelm E et al (2013) Bilateral deficit between concentric and isometric muscle actions. Isokinet Exerc Sci Exerc Sci 21:161–165

    Google Scholar 

  • Botton CE, Radaelli R, Wilhelm EN et al (2015) Neuromuscular adaptations to unilateral vs. bilateral strength training in women

  • Bračič M, Supej M, Peharec S et al (2010) An investigation of the influence of bilateral deficit on the counter-movement jump performance in elite sprinters. Kinesiology 42:73–80

    Google Scholar 

  • Brouwer B, Ashby P (1990) Corticospinal projections to upper and lower limb spinal motoneurons in man. Electroencephalogr Clin Neurophysiol 76:509–519

    Article  CAS  PubMed  Google Scholar 

  • Brown L, Whitehurst M, Gilbert R et al (1994) Effect of velocity on the bilateral deficit during dynamic knee extension and flexion exercise in females. Isokinet Exerc Sci 4:153–156

    Google Scholar 

  • Buckthorpe MW, Pain MTG, Folland JP (2013) Bilateral deficit in explosive force production is not caused by changes in agonist neural drive. PLoS One 8:e57549. doi:10.1371/journal.pone.0057549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke RE, Levine DN, Tsairis P, Zajac FE (1973) Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol 234:723–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll TJ, Herbert RD, Munn J et al (2006) Contralateral effects of unilateral strength training: evidence and possible mechanisms. J Appl Physiol 101:1514–1522. doi:10.1152/japplphysiol.00531.2006

    Article  PubMed  Google Scholar 

  • Cengiz A (2015) EMG and peak force responses to PNF stretching and the relationship between stretching-induced force deficits and bilateral deficits. J Phys Ther Sci 27:631–634. doi:10.1589/jpts.27.631

    Article  PubMed  PubMed Central  Google Scholar 

  • Challis JH (1998) An investigation of the influence of bi-lateral deficit on human jumping. Hum Mov Sci 17:307–325. doi:10.1016/S0167-9457(98)00002-5

    Article  Google Scholar 

  • Cornwell A, Khodiguian N, Yoo EJ (2012) Relevance of hand dominance to the bilateral deficit phenomenon. Eur J Appl Physiol 112:4163–4172. doi:10.1007/s00421-012-2403-z

    Article  PubMed  Google Scholar 

  • Costa E, Moreira A, Cavalcanti B et al (2015) Effect of unilateral and bilateral resistance exercise on maximal voluntary strength, total volume of load lifted, and perceptual and metabolic responses. Biol Sport 32:35–40. doi:10.5604/20831862.1126326

    Article  PubMed  Google Scholar 

  • Coyle EF, Costill DL, Lesmes GR (1979) Leg extension power and muscle fiber composition. Med Sci Sports 11:12–15

    CAS  PubMed  Google Scholar 

  • Cresswell A, Overdal A (2002) Muscle activation and torque development during maximal unilateral and bilateral isokinetic knee extensions. J Sports Med Phys Fitness 42:19–25

    CAS  PubMed  Google Scholar 

  • Crosby CA, Wehbé MA, Mawr B (1994) Hand strength: normative values. J Hand Surg Am 19:665–670

    Article  CAS  PubMed  Google Scholar 

  • da Silva JJ, Behm DG, Gomes WA et al (2015) Unilateral plantar flexors static-stretching effects on ipsilateral and contralateral jump measures. J Sports Sci Med 14:315–321

    PubMed  PubMed Central  Google Scholar 

  • Danner SM, Hofstoetter US, Freundl B et al (2015) Human spinal locomotor control is based on flexibly organized burst generators. Brain 138:577–588. doi:10.1093/brain/awu372

    Article  PubMed  PubMed Central  Google Scholar 

  • Delwaide PJ, Sabatino M, Pepin JL, La Grutta V (1988) Reinforcement of reciprocal inhibition by contralateral movements in man. Exp Neurol 99:10–16. doi:10.1016/0014-4886(88)90122-7

    Article  CAS  PubMed  Google Scholar 

  • Dickin C, Too D (2006) Effects of movement velocity and maximal concentric and eccentric actions on the bilateral deficit. Res Q Exerc Sport 77:296–303

    Article  PubMed  Google Scholar 

  • Dickin D, Sandow R, Dolny D (2011) Bilateral deficit in power production during multi-joint leg extensions. Eur J Sport Sci 11:437–445

    Article  Google Scholar 

  • Donath L, Siebert T, Faude O, Puta C (2014) Correct, fake and absent pre-information does not affect the occurrence and magnitude of the bilateral force deficit. J Sport Sci Med 13:439–443

    Google Scholar 

  • Drury D, Mason C, Hill A (2004) The effects of joint angle on the bilateral deficit of the biceps brachii

  • Duchateau J (1995) Bed rest induces neural and contractile adaptations in triceps surae. Med Sci Sports Exerc 27:1581–1589

    Article  CAS  PubMed  Google Scholar 

  • Ebben WP, Flanagan E, Jensen RL (2009) Bilateral facilitation and laterality during the countermovement jump. Percept Mot Skills 108:251–258. doi:10.2466/PMS.108.1.251-258

    Article  PubMed  Google Scholar 

  • Enoka RM, Duchateau J (2015) Inappropriate interpretation of surface EMG signals and muscle fiber characteristics impedes progress on understanding the control of neuromuscular function. J Appl Physiol. doi:10.1152/japplphysiol.00280.2015

  • Farina D (2006) Interpretation of the surface electromyogram in dynamic contractions. Exerc Sport Sci Rev 34:121–127

    Article  PubMed  Google Scholar 

  • Farina D, Holobar A, Merletti R, Enoka RM (2010) Decoding the neural drive to muscles from the surface electromyogram. Clin Neurophysiol 121:1616–1623. doi:10.1016/j.clinph.2009.10.040

    Article  PubMed  Google Scholar 

  • Farina D, Merletti R, Enoka RM (2014) The extraction of neural strategies from the surface EMG: an update. J Appl Physiol 117:1215–1230. doi:10.1152/japplphysiol.00162.2014

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferbert A, Priori A, Rothwell JC et al (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789

    CAS  PubMed  Google Scholar 

  • Gazzaniga M, Sperry R (1966) Simultaneous double discrimination response following brain bisection. Psychon Sci 4:261–262

    Article  Google Scholar 

  • Giovannelli F, Borgheresi A, Balestrieri F et al (2009) Modulation of interhemispheric inhibition by volitional motor activity: an ipsilateral silent period study. J Physiol 587:5393–5410. doi:10.1113/jphysiol.2009.175885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould H 3rd, Cusick C, Pons T, Kaas J (1986) The relationship of corpus callosum connections to electrical stimulation maps of motor, supplementary motor, and the frontal eye fields in owl monkeys. J Comp Neurol 247:297–325

    Article  PubMed  Google Scholar 

  • Häkkinen K, Pastinen UM, Karsikas R, Linnamo V (1995) Neuromuscular performance in voluntary bilateral and unilateral contraction and during electrical stimulation in men at different ages. Eur J Appl Physiol Occup Physiol 70:518–527

    Article  PubMed  Google Scholar 

  • Häkkinen K, Kraemer W, Kallinen M et al (1996a) Neuromuscular adaptations during bilateral versus unilateral strength training in middle-aged and elderly men and women. Acta Physiol Scand 157:77–88. doi:10.1046/j.1365-201X.1996.523293000.x

    Article  Google Scholar 

  • Häkkinen K, Kraemer W, Kallinen M et al (1996b) Bilateral and unilateral neuromuscular function and muscle cross-sectional area in middle-aged and elderly men and women. J Gerontol A Biol Sci Med Sci 51:B21–B29

    Article  PubMed  Google Scholar 

  • Häkkinen K, Kraemer WJ, Newton RU (1997) Muscle activation and force production during bilateral and unilateral concentric and isometric contractions of the knee extensors in men and women at different ages. Electromyogr Clin Neurophysiol 37:131–142

    PubMed  Google Scholar 

  • Halperin I, Chapman DW, Behm DG (2015) Non-local muscle fatigue: effects and possible mechanisms. Eur J Appl Physiol 115:2031–2048. doi:10.1007/s00421-015-3249-y

    Article  PubMed  Google Scholar 

  • Hay D, de Souza VA, Fukashiro S (2006) Human bilateral deficit during a dynamic multi-joint leg press movement. Hum Mov Sci 25:181–191. doi:10.1016/j.humov.2005.11.007

    Article  PubMed  Google Scholar 

  • Heckman CJ, Enoka RM (2012) Motor unit. Compr Physiol 2:2629–2682. doi:10.1002/cphy.c100087

    CAS  PubMed  Google Scholar 

  • Henneman E (1957) Relation between size of neurons and their susceptibility to discharge. Science 126:1345–1347

    Article  CAS  PubMed  Google Scholar 

  • Henry F, Smith L (1961) Simultaneous vs. separate bilateral muscular contractions in relation to neural overflow theory and neuromotor specificity. Res Q Am Assoc Health Phys Educ Recreat 32:42–47

    Google Scholar 

  • Herbert R, Gandevia S (1996) Muscle activation in unilateral and bilateral efforts assessed by motor nerve and cortical stimulation. J Appl Physiol 80:1351–1356

    CAS  PubMed  Google Scholar 

  • Hernandez JP, Nelson-Whalen NL, Franke WD, McLean SP (2003) Bilateral index expressions and iEMG activity in older versus young adults. J Gerontol A Biol Sci Med Sci 58:536–541

    Article  PubMed  Google Scholar 

  • Howard J, Enoka R (1991) Maximum bilateral contractions are modified by neurally mediated interlimb effects. J Appl Physiol 70:306–316

    CAS  PubMed  Google Scholar 

  • Izquierdo M, Ibañez J, Gorostiaga E et al (1999) Maximal strength and power characteristics in isometric and dynamic actions of the upper and lower extremities in middle-aged and older men. Acta Physiol Scand 167:57–68. doi:10.1046/j.1365-201x.1999.00590.x

    Article  CAS  PubMed  Google Scholar 

  • Jakobi J, Cafarelli E (1998) Neuromuscular drive and force production are not altered during bilateral contractions. J Appl Physiol 84:200–206

    CAS  PubMed  Google Scholar 

  • Jakobi J, Chilibeck P (2001) Bilateral and unilateral contractions: possible differences in maximal voluntary force. Can J Appl Physiol 26:12–33

    Article  CAS  PubMed  Google Scholar 

  • Janzen C, Chilibeck P, Davison K (2006) The effect of unilateral and bilateral strength training on the bilateral deficit and lean tissue mass in post-menopausal women. Eur J Appl Physiol 97:253–260

    Article  PubMed  Google Scholar 

  • Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles. J Neurol Sci 18:111–129. doi:10.1016/0022-510X(73)90023-3

    Article  CAS  PubMed  Google Scholar 

  • Kawakami Y, Sale D, MacDougall J, Moroz J (1998) Bilateral deficit in plantar flexion: relation to knee joint position, muscle activation, and reflex excitability. Eur J Appl Physiol Occup Physiol 77:212–216

    Article  CAS  PubMed  Google Scholar 

  • Keenan KG, Farina D, Maluf KS et al (2005) Influence of amplitude cancellation on the simulated surface electromyogram. J Appl Physiol 98:120–131. doi:10.1152/japplphysiol.00894.2004

    Article  PubMed  Google Scholar 

  • Kellis E (1998) Quantification of quadriceps and hamstring antagonist activity. Sport Med 25:37–62

    Article  CAS  Google Scholar 

  • Khodiguian N, Cornwell A, Lares E et al (2003) Expression of the bilateral deficit during reflexively evoked contractions. J Appl Physiol 94:171–178

    Article  CAS  PubMed  Google Scholar 

  • Kidgell DJ, Frazer AK, Daly RM et al (2015) Increased cross-education of muscle strength and reduced corticospinal inhibition following eccentric strength training. Neuroscience 300:566–575. doi:10.1016/j.neuroscience.2015.05.057

    Article  CAS  PubMed  Google Scholar 

  • Koh TJ, Grabiner MD, Clough CA (1993) Bilateral deficit is larger for step than for ramp isometric contractions. J Appl Physiol 74:1200–1205

    CAS  PubMed  Google Scholar 

  • Krishnan C, Williams GN (2009) Variability in antagonist muscle activity and peak torque during isometric knee strength testing. Iowa Orthop J 29:149–158

    PubMed  PubMed Central  Google Scholar 

  • Krishnan C, Williams GN (2010) Error associated with antagonist muscle activity in isometric knee strength testing. Eur J Appl Physiol 109:527–536. doi:10.1007/s00421-010-1391-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Kubo K, Tsunoda N, Kanehisa H, Fukunaga T (2004) Activation of agonist and antagonist muscles at different joint angles during maximal isometric efforts. Eur J Appl Physiol 91:349–352

    Article  PubMed  Google Scholar 

  • Kuruganti U, Parker P, Rickards J et al (2005) Bilateral isokinetic training reduces the bilateral leg strength deficit for both old and young adults. Eur J Appl Physiol 94:175–179

    Article  PubMed  Google Scholar 

  • Kuruganti U, Seaman K (2006) The bilateral leg strength deficit is present in old, young and adolescent females during isokinetic knee extension and flexion. Eur J Appl Physiol 97:322–326

    Article  PubMed  Google Scholar 

  • Kuruganti U, Murphy T (2008) Bilateral deficit expressions and myoelectric signal activity during submaximal and maximal isometric knee extensions in young, athletic males. Eur J Appl Physiol 102:721–726

    Article  PubMed  Google Scholar 

  • Kuruganti U, Murphy T, Pardy T (2011) Bilateral deficit phenomenon and the role of antagonist muscle activity during maximal isometric knee extensions in young, athletic men. Eur J Appl Physiol 111:1533–1539

    Article  PubMed  Google Scholar 

  • Kuypers HG (1978) The motor system and the capacity to execute highly fractionated distal extremity movements. Electroencephalogr Clin Neurophysiol Suppl 429–431

  • Lago P, Jones NB (1977) Effect of motor-unit firing time statistics on e.m.g. spectra. Med Biol Eng Comput 15:648–655

    Article  CAS  PubMed  Google Scholar 

  • Lawrence J, De Luca C (1983) Myoelectric signal versus force relationship in different human muscles. J Appl Physiol Respir Environ Exerc Physiol 54:1653–1659

    CAS  PubMed  Google Scholar 

  • Lieber R, Loren G, Friden J (1994) In vivo measurement of human wrist extensor muscle sarcomere length changes. J Neurophysiol 71:874–881

    CAS  PubMed  Google Scholar 

  • Luft AR, Smith GV, Forrester L et al (2002) Comparing brain activation associated with isolated upper and lower limb movement across corresponding joints. Hum Brain Mapp 17:131–140. doi:10.1002/hbm.10058

    Article  PubMed  Google Scholar 

  • MacDonald M, Losier D, Chester V, Kuruganti U (2014) Comparison of bilateral and unilateral contractions between swimmers and nonathletes during leg press and hand grip exercises. Appl Physiol Nutr Metab 39:1245–1249

    Article  PubMed  Google Scholar 

  • Magnus C, Farthing J (2008) Greater bilateral deficit in leg press than in handgrip exercise might be linked to differences in postural stability requirements. Appl Physiol Nutr Metab 33:1132–1139

    Article  PubMed  Google Scholar 

  • Matkowski B, Martin A, Lepers R (2011) Comparison of maximal unilateral versus bilateral voluntary contraction force. Eur J Appl Physiol 111:1571–1578

    Article  PubMed  Google Scholar 

  • McCurdy K, O’Kelley E, Kutz M et al (2010) Comparison of lower extremity EMG between the 2-leg squat and modified single-leg squat in female athletes. J Sport Rehabil 19:57–70

    Article  PubMed  Google Scholar 

  • Merton P (1954) Voluntary strength and fatigue. J Physiol 123:553–564

  • Meyer B, Roricht S, von Einsiedel HG (1995) Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain 118:429–440

    Article  PubMed  Google Scholar 

  • Meyer B, Röricht S, Woiciechowsky C (1998) Topography of fibers in the human corpus callosum mediating interhemispheric inhibition between the motor cortices. Ann Neurol 43:360–369

    Article  CAS  PubMed  Google Scholar 

  • Miller AE, MacDougall JD, Tarnopolsky MA, Sale DG (1993) Gender differences in strength and muscle fiber characteristics. Eur J Appl Physiol Occup Physiol 66:254–262

    Article  CAS  PubMed  Google Scholar 

  • Moritani T, Oddsson L, Thorstensson A (1991) Activation patterns of the soleus and gastrocnemius muscles during different motor tasks. J Electromyogr Kinesiol 1:81–88

    Article  CAS  PubMed  Google Scholar 

  • Narici M, De Boer M (2011) Disuse of the musculo-skeletal system in space and on earth. Eur J Appl Physiol 111:403–420

    Article  CAS  PubMed  Google Scholar 

  • Nijem R, Galpin A (2014) Unilateral versus bilateral exercise and the role of the bilateral force deficit. Strength Cond J 36:113–118

    Article  Google Scholar 

  • Oda S (1997) Motor control for bilateral muscular contractions in humans. Jpn J Physiol 47:487–498

    Article  CAS  PubMed  Google Scholar 

  • Oda S, Moritani T (1994) Maximal isometric force and neural activity during bilateral and unilateral elbow flexion in humans. Eur J Appl Physiol Occup Physiol 69:240–243

    Article  CAS  PubMed  Google Scholar 

  • Oda S, Moritani T (1995) Movement-related cortical potentials during handgrip contractions with special reference to force and electromyogram bilateral deficit. Eur J Appl Physiol Occup Physiol 72:1–5

    Article  CAS  PubMed  Google Scholar 

  • Oda S, Moritani T (1996) Cross-correlation studies of movement-related cortical potentials during unilateral and bilateral muscle contractions in humans. Eur J Appl Physiol Occup Physiol 74:29–35

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuki T (1981) Decrease in grip strength induced by simultaneous bilateral exertion with reference to finger strength. Ergonomics 24:37–48

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuki T (1983) Decrease in human voluntary isometric arm strength induced by simultaneous bilateral exertion. Behav Brain Res 7:165–178

    Article  CAS  PubMed  Google Scholar 

  • Owings T, Grabiner M (1998a) Normally aging older adults demonstrate the bilateral deficit during ramp and hold contractions. J Gerontol A Biol Sci Med Sci 53:B425–B429

    Article  CAS  PubMed  Google Scholar 

  • Owings T, Grabiner M (1998b) Fatigue effects on the bilateral deficit are speed dependent. Med Sci Sports Exerc 30:1257–1262

    Article  CAS  PubMed  Google Scholar 

  • Pain M (2014) Considerations for single and double leg drop jumps: bilateral deficit, standardizing drop height, and equalizing training load. J Appl Biomech 30:722–727

    Article  PubMed  Google Scholar 

  • Palmer E, Ashby P (1992) Corticospinal projections to upper limb motoneurones in humans. J Physiol 448:397–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandya DN, Vignolo LA (1971) Intra- and interhemispheric projections of the precentral, premotor and arcuate areas in the rhesus monkey. Brain Res 26:217–233

    Article  CAS  PubMed  Google Scholar 

  • Perez M, Butler J, Taylor J (2014) Modulation of transcallosal inhibition by bilateral activation of agonist and antagonist proximal arm muscles. J Neurophysiol 111:405–414

    Article  PubMed  Google Scholar 

  • Post M, van Duinen H, Steens A, Renken R (2007) Reduced cortical activity during maximal bilateral contractions of the index finger. Neuroimage 35:16–27

    Article  PubMed  Google Scholar 

  • Rejc E, Lazzer S, Antonutto G et al (2010) Bilateral deficit and EMG activity during explosive lower limb contractions against different overloads. Eur J Appl Physiol 108:157–165

    Article  PubMed  Google Scholar 

  • Rejc E, di Prampero P, Lazzer S et al (2015) A 35-day bed rest does not alter the bilateral deficit of the lower limbs during explosive efforts. Eur J Appl Physiol 115:1323–1330

    Article  PubMed  Google Scholar 

  • Rouiller EM, Babalian A, Kazennikov O et al (1994) Transcallosal connections of the distal forelimb representations of the primary and supplementary motor cortical areas in macaque monkeys. Exp Brain Res 102:227–243

    Article  CAS  PubMed  Google Scholar 

  • Roy MA, Sylvestre M, Katch FI et al (1990) Proprioceptive facilitation of muscle tension during unilateral and bilateral knee extension. Int J Sports Med 11:289–292. doi:10.1055/s-2007-1024809

    Article  CAS  PubMed  Google Scholar 

  • Rutherford O, Jones D (1986) The role of learning and coordination in strength training. Eur J Appl Physiol 55:100–105

    Article  CAS  Google Scholar 

  • Sale D, MacDougall D (1981) Specificity in strength training: a review for the coach and athlete. Can J Appl Physiol 6:87–92

    CAS  Google Scholar 

  • Samozino P, Rejc E, di Prampero P et al (2014) Force–velocity properties’ contribution to bilateral deficit during ballistic push-off. Med Sci Sports Exerc 46:107–114

    Article  PubMed  Google Scholar 

  • Santana J (2001) Single-leg training for 2-legged sports: efficacy of strength development in athletic performance. Strength Cond J 23:35–37

    Article  Google Scholar 

  • Schantz P, Moritani T, Karlson E et al (1989) Maximal voluntary force of bilateral and unilateral leg extension. Acta Physiol Scand 136:185–192

    Article  CAS  PubMed  Google Scholar 

  • Secher NH (1975) Isometric rowing strength of experienced and inexperienced oarsmen. Med Sci Sports 7:280–283

    CAS  PubMed  Google Scholar 

  • Secher N (1976) Contralateral influence on recruitment of type I muscle fibres during maximum voluntary contractions of the legs. Acta Physiol Scand 103:456–462

    Article  Google Scholar 

  • Secher N, Rørsgaard S, Secher O (1978) Contralateral influence on recruitment of curarized muscle fibres during maximal voluntary extension of the legs. Acta Physiol Scand 103:456–462

    Article  CAS  PubMed  Google Scholar 

  • Secher N, Rube N, Elers J (1988) Strength of two- and one-leg extension in man. Acta Physiol Scand 134:333–339

    Article  CAS  PubMed  Google Scholar 

  • Seki T, Ohtsuki T (1990) Influence of simultaneous bilateral exertion on muscle strength during voluntary submaximal isometric contraction. Ergonomics 33:1131–1142

    Article  CAS  PubMed  Google Scholar 

  • Sherrington CS (1910) Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J Physiol 40:28–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinohara M, Yoshitake Y, Kouzaki M et al (2003) Strength training counteracts motor performance losses during bed rest. J Appl Physiol 95:1485–1492

    Article  PubMed  Google Scholar 

  • Siegler S, Hillstrom H, Freedman W, Moskowitz G (1985) Effect of myoelectric signal processing on the relationship between muscle force and processed EMG. Am J Phys Med 64:130–149

    CAS  PubMed  Google Scholar 

  • Simoneau-Buessinger E, Leteneur S, Toumi A et al (2015) Bilateral strength deficit is not neural in origin; rather due to dynamometer mechanical configuration. PLoS One 10:e0145077. doi:10.1371/journal.pone.0145077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Škarabot J, Perellón Alfonso R, Cronin N et al Corticospinal and transcallosal modulation of unilateral and bilateral contractions of lower limbs. (Manucript in preparation)

  • Solomonow M, Baratta R, Shoji H, D’Ambrosia R (1990) The EMG–force relationships of skeletal muscle; dependence on contraction rate, and motor units control strategy. Electromyogr Clin Neurophysiol 30:141–152

    CAS  PubMed  Google Scholar 

  • Soteropoulos D, Perez M (2011) Physiological changes underlying bilateral isometric arm voluntary contractions in healthy humans. J Neurophysiol 105:1594–1602

    Article  PubMed  PubMed Central  Google Scholar 

  • Takebayashi H, Yagi F, Miyamoto K et al (2009) Interaction interference between arm and leg: division of attention through muscle force regulation. Hum Mov Sci 28:752–759. doi:10.1016/j.humov.2009.04.005

    Article  PubMed  Google Scholar 

  • Taniguchi Y (1997) Lateral specificity in resistance training: the effect of bilateral and unilateral training. Eur J Appl Physiol Occup Physiol 75:144–150

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi Y (1998) Relationship between the modifications of bilateral deficit in upper and lower limbs by resistance training in humans. Eur J Appl Physiol Occup Physiol 78:226–230

    Article  CAS  PubMed  Google Scholar 

  • Taylor J (2006) Stimulation at the cervicomedullary junction in human subjects. J Electromyogr Kinesiol 16:215–223

    Article  PubMed  Google Scholar 

  • Teixeira A, Narciso J, Narciso J et al (2013) Bilateral deficit in maximal isometric knee extension in trained men. J Exerc Physiol Online 16:28–35

    Google Scholar 

  • Thorstensson A, Grimby G, Karlsson J (1976) Force–velocity relations and fiber composition in human knee extensor muscles. J Appl Physiol 40:12–16

    CAS  PubMed  Google Scholar 

  • Tihanyi J, Apor P, Fekete G (1982) Force–velocity–power characteristics and fiber composition in human knee extensor muscles. Eur J Appl Physiol Occup Physiol 48:331–343

    Article  CAS  PubMed  Google Scholar 

  • Van Dieën J, Ogita F, De Haan A (2003) Reduced neural drive in bilateral exertions: a performance-limiting factor? Med Sci Sports Exerc 35:111–118

    Article  PubMed  Google Scholar 

  • van Soest A, Roebroeck M, Bobbert M et al (1985) A comparison of one-legged and two-legged countermovement jumps. Med Sci Sports Exerc 17:635–639

    Article  PubMed  Google Scholar 

  • Vandervoort A, Sale D, Moroz J (1984) Comparison of motor unit activation during unilateral and bilateral leg extension. J Appl Physiol Respir Environ Exerc Physiol 56:46–51

    CAS  PubMed  Google Scholar 

  • Vandervoort A, Sale D, Moroz J (1987) Strength–velocity relationship and fatiguability of unilateral versus bilateral arm extension. Eur J Appl Physiol Occupational Physiol 56:201–205

    Article  CAS  Google Scholar 

  • Veligekas P, Bogdanis G (2013) Bilateral deficit in vertical jumping in pre-pubertal boys and girls. J Phys Educ Sport 13:120–126

    Google Scholar 

  • Vint P, McLean S (1999) Maximal and submaximal expressions of the bilateral deficit phenomenon

  • Volz LJ, Eickhoff SB, Pool E-M et al (2015) Differential modulation of motor network connectivity during movements of the upper and lower limbs. Neuroimage 119:44–53. doi:10.1016/j.neuroimage.2015.05.101

    Article  PubMed  Google Scholar 

  • Wassermann E, Fuhr P, Cohen L, Hallett M (1991) Effects of transcranial magnetic stimulation on ipsilateral muscles. Neurology 41:1795–1799

    Article  CAS  PubMed  Google Scholar 

  • Weir J, Housh D, Housh T, Weir L (1995) The effect of unilateral eccentric weight training and detraining on joint angle specificity, cross-training, and the bilateral deficit. J Orthop Sports Phys Ther 22:207–215

    Article  CAS  PubMed  Google Scholar 

  • Weir J, Housh D, Housh T, Weir L (1997) The effect of unilateral concentric weight training and detraining on joint angle specificity, cross-training, and the bilateral deficit. J Orthop Sports Phys Ther 25:264–270

    Article  CAS  PubMed  Google Scholar 

  • Yedimenko J, Perez M (2010) The effect of bilateral isometric forces in different directions on motor cortical function in humans. J Neurophysiol 104:2922–2931

    Article  PubMed  PubMed Central  Google Scholar 

  • Zijdewind I, Kernell D (2001) Bilateral interactions during contractions of intrinsic hand muscles. J Neurophysiol 85:1907–1913

    CAS  PubMed  Google Scholar 

  • Zwarts MJ, Stegeman DF (2003) Multichannel surface EMG: basic aspects and clinical utility. Muscle Nerve 28:1–17. doi:10.1002/mus.10358

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Roger M. Enoka for comments on an earlier draft version of the manuscript. The first author was supported by Ad Futura scholarship of Slovene Human Resources Development and Scholarship Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Škarabot.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Michael Lindinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Škarabot, J., Cronin, N., Strojnik, V. et al. Bilateral deficit in maximal force production. Eur J Appl Physiol 116, 2057–2084 (2016). https://doi.org/10.1007/s00421-016-3458-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-016-3458-z

Keywords

Navigation