Skip to main content
Log in

Maximal aerobic power and anaerobic capacity in cycling across the age spectrum in male master athletes

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

An Erratum to this article was published on 21 July 2016

Abstract

Purpose

We analyzed the best performance times of master cycling athletes in the 200–3000 m track competitions to estimate the decay of maximal aerobic power (MAP) and anaerobic capacity (AnS) with aging.

Methods

In various decades of age (30–80 years), MAP and AnS were estimated using an iterative procedure as the values that minimize the difference between: (1) the metabolic power (\(\dot{E} \left( t \right)\)) necessary to cover a given distance (d) in the time t and; (2) the maximal metabolic power (\(\dot{E}_{ \hbox{max} } \left( t \right)\)) maintained at a constant level throughout the competition.

Results

MAP started decreasing at 45 years of age. Thereafter, it showed an average percent rate of decrease of about 16 % for decade, as previously shown in other classes of master athletes. In addition, AnS seemed to decay by about 11 % every 10 years from the second part of the fifth decade.

Conclusions

The decay of MAP occurred in spite of the active lifestyle of the subjects and it may be attributed to the progressive impairment of maximal O2 delivery and/or of peripheral O2 utilization. The loss of AnS might derive from the progressive loss of muscle mass occurring after the fifth decade of life, to the progressive qualitative deterioration of the anaerobic energy yielding pathways or to the lower capacity of MN recruitment during maximal efforts. The proposed approach may be applied to other types of human locomotion of whom the relationship between performance t and \(\dot{E} \left( t \right)\) is known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A :

Frontal area of the subject riding the bike (m2)

AnS:

Anaerobic capacity (kJ)

[ATP]:

Intramuscular adenosine-tri-phosphate concentration (mM kg−1)

BPT:

Best performance time (s)

C :

Energy cost of human locomotion (kJ km−1, J m−1 kg−1)

C c,a :

Average energy cost of cycling during the acceleration phase for a stationary start (kJ km−1, J m−1 kg−1)

C c :

Energy cost of cycling, (kJ km−1, J m−1 kg−1)

C rr :

Rolling resistance coefficient

C x :

Drag coefficient

d :

Distance (m)

E acc,a :

Amount of metabolic energy spent during the acceleration phase (kJ)

E Aer :

Percent contribution of aerobic energy sources to a given effort (%)

E AnS :

Percent contribution of anaerobic energy sources to a given effort (%)

\(\dot{E} \left( t \right)\) :

Metabolic power required to cover a given distance d as a function of the time in human locomotion (kW)

\(\dot{E}_{c} \left( t \right)\) :

Metabolic power required to cover a given distance d as a function of the time in cycling (kW)

\(\dot{E}_{ \hbox{max} } \left( t \right)\) :

Maximal metabolic power available to the athlete as a function of the time of effort (kW)

η c :

Apparent mechanical efficiency of cycling

g :

Acceleration of gravity (9.81 m s−2)

HRmax :

Maximal hear rate (beats per minute)

[La] b :

Blood lactate concentration, peak lactate concentration (mM)

M t :

Overall mass (subject plus frame) (kg)

MAP:

Maximal aerobic power (kW)

MAP1H :

Maximal aerobic power calculated from the metabolic power maintained by during best hour unaccompanied performance (kW)

[PCr]:

Intramuscular phosphocreatine concentration (mM kg−1)

ρ :

Air density (kg m−3)

t e :

Time of exhaustion (s)

τ :

Time constant of the mono-exponential increase of muscular oxygen uptake as a function of time of exercise (s)

s :

Speed of locomotion (m s−1)

\(\dot{V}\text{O}_{{2{ \hbox{max} }}}\) :

Maximal oxygen uptake (L min−1, mL min−1 kg−1)

References

  • Aagard P, Suetta C, Caserotti P, Magnusson SP, Kjær M (2010) Role of the nervous system in sarcopenia and muscle atrophy with aging: strength training as a countermeasure. Scand J Med Sci Sports 20:49–64

    Article  Google Scholar 

  • Adami A, Pogliaghi S, De Roia G, Capelli C (2012) Oxygen uptake, cardiac output and muscle deoxygenation at the onset of moderate and supramaximal exercise in humans. Eur J Appl Physiol 111:1517–1527

    Article  Google Scholar 

  • Arbab-Zadeh A, Dijk E, Prasad A, Fu Q, Torres P, Zhang R, Thomas JD, Palmer D, Levine BD (2004) Effect of aging and physical activity on left ventricular compliance. Circulation 110:1799–1805

    Article  PubMed  Google Scholar 

  • Åstrand I, Åstrand PO, HAllback I, Kilbom Å (1973) Reduction in maximal oxygen uptake with age. J Appl Physiol 35:649–654

    PubMed  Google Scholar 

  • Baker BA, Tang YQ, Turner MJ (2003) Percentage decline in master superathlete track and field performance with aging. Exp Aging Res 29:47–65

    Article  CAS  PubMed  Google Scholar 

  • Berger NJA, Rittweger J, Kwiet A, Michaelis I, Williams AG, Tolfrey K, Jones AM (2006) Pulmonary O2 uptake kinetics in endurance and sprint-trained master athletes. Int J Sports Med 27:1005–1012

    Article  CAS  PubMed  Google Scholar 

  • Capelli C (1999) Physiological determinants of best performances in human locomotion. Eur J Appl Physiol 80:298–307

    Article  CAS  Google Scholar 

  • Capelli C, Rosa G, Butti F, Ferretti G, Veicsteinas A, di Prampero PE (1993) Energy cost and efficiency of riding “aerodynamic bicycles”. Eur J Appl Physiol 67:144–149

    Article  CAS  Google Scholar 

  • Capelli C, Schena F, Zamparo P, Dal Monte A, Faina M, di Prampero PE (1998) Energetics of best performances in track cycling. Med Sci Sports Exer 30:614–624

    Article  CAS  Google Scholar 

  • Coggan AR, Spina RJ, King DS, Rogers MA, Brown M, Nemeth PM, Holloszy JO (1992) Skeletal muscle adaptations to endurance training in 60–70-year old men and women. J Appl Physiol 72:1780–1786

    CAS  PubMed  Google Scholar 

  • Conley KE, Jubrias SA, Esselman PC (2000) Oxidative capacity in human muscle. J Physiol 526:203–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLorey DS, Kowalchuk JM, Paterson DH (2004) Effect of age on O2 uptake kinetics and the adaptation of muscle deoxygenation at the onset of moderate-intensity cycling exercise. J Appl Physiol 97:165–172

    Article  PubMed  Google Scholar 

  • di Prampero PE (1986) The energy cost of human locomotion on land and in water. Int J Sports Med 7:55–72

    Article  PubMed  Google Scholar 

  • di Prampero PE, Capelli C, Pagliaro P, Antonutto G, Girardis M, Zamparo P, Soule RG (1993) Energetics of best performances in middle distance running. J Appl Physiol 74:2318–2342

    Article  PubMed  Google Scholar 

  • Dill DB, Robinson S, Ross JC (1967) A longitudinal study of 16 champion runners. J Sports Med Phys Fitness 7:4–27

    CAS  PubMed  Google Scholar 

  • Douglas P, O’Toole M (1992) Aging and physical activity determine cardiac structure and function in the older athlete. J Appl Physiol 72:1969–1973

    CAS  PubMed  Google Scholar 

  • Evans L, Rice CL, Noble EG, Paterson DH, Cunningham DA, Taylor AW (1992) Comparison of histochemical, biochemical and contractile properties of triceps sums of trained aged subjects. Can J Aging 11:412–425

    Article  Google Scholar 

  • Fleg JL, Lakatta EG (1988) Role of muscle loss in the age-associated reduction of \(\dot{V}\text{O}_{{2{ \hbox{max} }}}\). J Appl Physiol 65:1147–1151

  • Fung L, Ha A (1994) Changes in track and field performance with chronological aging. Int J Aging Hum Dev 38:171–180

    Article  CAS  PubMed  Google Scholar 

  • García-López J, Rodríguez-Marroyo JA, Juneau CE, Peleteiro J, Córdova Martínez A, Villa JG (2008) Reference values and improvement of aerodynamic drag in professional cyclists. J Sports Sci 26:277–286

    Article  PubMed  Google Scholar 

  • Gastin PB (1994) Quantification of anaerobic capacity. Scand J Med Sci Sports 4:91–112

    Article  Google Scholar 

  • Gent DB, Norton K (2013) Aging has greater impact on anaerobic versus aerobic power in trained master athletes. J Sports Sci 31:97–103

    Article  PubMed  Google Scholar 

  • Grassi B, Cerretelli P, Narici MV, Marconi (1991) Peak anaerobic power in master athletes. Eur J Appl Physiol 62:394–399

    Article  CAS  Google Scholar 

  • Haldane JS, Priestley JG (1935) Respiration, 2nd edn. Yale University Press, New Haven, p 323

    Google Scholar 

  • Janssen I, Heymsfield SB, Wang Z, Ross R (2000) Skeletal muscle mass and distribution in 468 men and women aged 18–88 year. J Appl Physiol 89:81–88

    CAS  PubMed  Google Scholar 

  • Johnson PJ, Winter EM, Paterson DH, Koval JJ, Nevill AM, Cunningham DA (2000) Modeling the influence of age, body size and sex on maximum oxygen uptake in older humans. Exp Physiol 85:219–225

    Article  CAS  PubMed  Google Scholar 

  • Kasch FW, Boyer JL, Van Camp S, Nettl F, Verity LS, Wallace JP (1995) Cardiovascular changes with age and exercise. A 28-year longitudinal study. Scand J Med Sci Sports 5:147–151

    Article  CAS  PubMed  Google Scholar 

  • Kersick CM, Roberts MD, Dalbo VJ (2016) Intramuscular phosphagen status and the relationship to muscle performance across the age spectrum. Eur J Appl Physiol. 1:115–127. doi:10.1007/s00421-015-3246-1

    Article  Google Scholar 

  • Korhonen MT, Suominen H, Mero A (2005) Age and sex differences in blood lactate response to sprint running in elite master athletes. Can J Appl Physiol 30:647–665

    Article  CAS  PubMed  Google Scholar 

  • Korhonen MT, Cristea A, Alén M, Häkkinen K, Sipilä S, Mero A, Viitasalo JT, Larsson L, Suominen H (2006) Aging, muscle fiber type, and contractile function in sprint-trained athletes. J Appl Physiol 101:906–917

    Article  CAS  PubMed  Google Scholar 

  • Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, Salonen JT (2002) The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. J Am Med Assoc 288:2709–2716

    Article  Google Scholar 

  • Lanza IR, Nair KS (2010) Mitochondrial function as a determinant of life span. Pflugers Arch Eur J Physiol 459:277–289

    Article  CAS  Google Scholar 

  • Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2:164–168

    Google Scholar 

  • Lexell J (1993) Ageing and human muscle: observations from Sweden. Can J Appl Physiol 18:2–18

    Article  CAS  PubMed  Google Scholar 

  • Maharam LG, Bauman PA, Kalman D, Skolnik H, Perle SM (1999) Master athletes. Factors affecting performances. Sports Med 28:273–285

    Article  CAS  PubMed  Google Scholar 

  • Marcell TJ, Hawkins SA, Trapenning KM, Hyslop DM, Wiswell RA (2003) Longitudinal analysis of lactate threshold in male and female master Athletes. Med Sci Sports Exerc 35:810–817

    Article  CAS  PubMed  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–444

    Article  Google Scholar 

  • Marsh GD, Paterson DH, Govindasamy D, Cunningham DA (1999) Anaerobic power of the arms and legs of young and older men. Exp Physiol 84:589–597

    Article  CAS  PubMed  Google Scholar 

  • Marti B, Howland H (1990) Long-term effects of physical training on aerobic capacity: controlled study of former elite athletes. J Appl Physiol 69:1451–1459

    CAS  PubMed  Google Scholar 

  • Medbø JL, Tabata I (1993) Anaerobic energy release in working muscle during 30s to 3 min of exhausting exercise. J Appl Physiol 75:1654–1660

    PubMed  Google Scholar 

  • Menshikova EV, Ritov VB, Fairfull L, Ferrell RE, Kelley DE, Goodpastre BH (2006) Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol 61:534–540

    Article  Google Scholar 

  • Minetti AE, Moia C, Roi GS, Susta D, Ferretti G (2002) Energy cost of walking and running at extreme uphill and downhill slopes. J Appl Physiol 93:1039–1046

    Article  PubMed  Google Scholar 

  • Minetti AE, Cazzola D, Seminati E, Giacometti M, Roi GS (2011) Skyscraper running: physiological and biomechanical profile of a novel sport activity. Scand J Med Sci Sports 21:293–301

    Article  CAS  PubMed  Google Scholar 

  • Mittal KR, Logmani FH (1987) Age-related reduction in 8th cervical ventral nerve root myelinated fiber diameters and numbers in man. J Gerontol 42:8–10

    Article  CAS  PubMed  Google Scholar 

  • Moore DH (1975) A study of age group track and field records to relate age and running speed. Nature 253:264–265

    Article  PubMed  Google Scholar 

  • Motulsky HY, Christopoulos A (2004) Fitting models to biological data using linear and nonlinear regression. Oxford University Press, Oxford

    Google Scholar 

  • Narici MV, Maffulli V (2010) Sarcopenia: characteristics, mechanisms and functional significance. Br Med Bull 95:139–159

    Article  CAS  PubMed  Google Scholar 

  • Olds TS, Norton KI, Craig NP (1993) Mathematical model of cycling performance. J Appl Physiol 75:730–737

    CAS  PubMed  Google Scholar 

  • Péronnet F, Thibault G (1989) Mathematical analysis of running performance and world running records. J Appl Physiol 67:453–465

    PubMed  Google Scholar 

  • Péronnet F, Thibault G, Cousineau DL (1991) The theoretical analysis of the effect of altitude on running performance. J Appl Physiol 70:399–404

    PubMed  Google Scholar 

  • Pollock ML, Mengelkoch LJ, Graves JE, Lowenthal DT, Limacher MC, Foster C, Wilmore JH (1997) Twenty-year follow-up of aerobic power and body composition of older track athletes. J Appl Physiol 82:1508–1516

    CAS  PubMed  Google Scholar 

  • Poole DC, Barstow TJ, Mc Donough P, Jones AM (2008) Control of oxygen uptake during exercise. Med Sci Sports Exerc 40:462–474

    Article  CAS  PubMed  Google Scholar 

  • Proctor DN, Joyner MJ (1997) Skeletal muscle mass and the reduction of \(\dot{V}\text{O}_{{2{ \hbox{max} }}}\) in trained older subjects. J Appl Physiol 82:1411–1415

  • Proctor DN, Sinning WE, Walro JM, Sieck GC, Lemon PWR (1995) Oxidative capacity of human muscle fiber types: effects of age and training status. J Appl Physiol 78:2033–2038

    CAS  PubMed  Google Scholar 

  • Pugh LGCE (1974) The relation of oxygen intake and speed in competition cycling and comparative observations on the bi-cycle egometer. J Physiol (Lond) 241:795–808

    Article  CAS  Google Scholar 

  • Rittweger J, di Prampero PE, Maffulli N, Narici MV (2009) Sprint and endurance power and ageing: an analysis of master athletic world record. Proc R Soc B 276:683–689

    Article  PubMed  Google Scholar 

  • Robinson S (1938) Experimental studies of physical fitness in relation to age. Arbeits Physiol 10:251–323

    Google Scholar 

  • Rogers, MA, Hagberg JM, Martin WH III, Ehsani AA, Holloszy JO (1990) Decline in \(\dot{V}\text{O}_{{2{ \hbox{max} }}}\) with aging in master athletes and sedentary men. J Appl Physiol 68:2195–2199

  • Seabury JJ, Adams WC, Ramey MR (1977) Influence of pedaling rate and power output on energy expenditure during bicycle ergometry. Ergonomics 20:491–498

    Article  CAS  PubMed  Google Scholar 

  • Seals DR, Hagberg JM, Spina RJ, Rogers MA, Schechtman KB, Ehsani AA (1994) Enhanced left ventricular performance in endurance trained older men. Circulation 89:198–205

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Seals DR (2008) Endurance exercise performance in Master athletes: age-associated changes and underlying physiological mechanisms. J Physiol 586:55–63

    Article  CAS  PubMed  Google Scholar 

  • Toussaint HM, Hollander AP (1994) Energetics of competitive swimming. Implications for training programmes. Sports Med 18:384–405

    Article  CAS  PubMed  Google Scholar 

  • Trappe S, Costill D, Vukovich M, Jones J, Melham T (1996) Aging among elite distance runners: a 22-year longitudinal study. J Appl Physiol 80:285–290

    CAS  PubMed  Google Scholar 

  • Wiswell RA, Hawkings SA, Jaque SV, Hyslop DH, Constantino N, Trapenning K, Marcell T, Schroeder ET (2001) Relationship between physiological loss, performance decrement, and age in master athletes. J Gerontol 56:M618–M626

    Article  CAS  Google Scholar 

  • Zamparo P, Gatta G, di Prampero PE (2012) The determinants of performance in master swimmers: an analysis of master world records. Eur J Appl Physiol 112:3511–3518

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Capelli.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The study was funded by the FUR 2014—UNIVR allocated to Carlo Capelli and Enrico Tam by the University of Verona.

Additional information

Communicated by Jean-René Lacour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capelli, C., Rittveger, J., Bruseghini, P. et al. Maximal aerobic power and anaerobic capacity in cycling across the age spectrum in male master athletes. Eur J Appl Physiol 116, 1395–1410 (2016). https://doi.org/10.1007/s00421-016-3396-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-016-3396-9

Keywords

Navigation