Skip to main content

Advertisement

Log in

\(\dot{V}{\text{O}}_{ 2}\) kinetics and metabolic contributions during full and upper body extreme swimming intensity

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Our purpose was to characterize the oxygen uptake (\(\dot{V}{\text{O}}_{ 2}\)) kinetics, assess the energy systems contributions and determine the energy cost when swimming front crawl at extreme intensity. Complementarily, we compared swimming full body with upper body only.

Methods

Seventeen swimmers performed a 100 m maximal front crawl in two conditions: once swimming with full body and other using only the upper propulsive segments. The \(\dot{V}{\text{O}}_{ 2}\) was continuously measured using a telemetric portable gas analyser (connected to a respiratory snorkel), and the capillary blood samples for lactate concentration analysis were collected.

Results

A sudden increase in \(\dot{V}{\text{O}}_{ 2}\) in the beginning of exercise, which continuously rose until the end of the bout (time: 63.82 ± 3.38 s; \(\dot{V}{\text{O}}_{{ 2 {\text{peak}}}}\): 56.07 ± 5.19 ml min−1 kg−1; \(\dot{V}{\text{O}}_{ 2}\) amplitude: 41.88 ± 4.74 ml min−1 kg−1; time constant: 12.73 ± 3.09 s), was observed. Aerobic, anaerobic lactic and alactic pathways were estimated and accounted for 43.4, 33.1 and 23.5 % of energy contribution and 1.16 ± 0.10 kJ m−1 was the energy cost. Complementarily, the absence of lower limbs lead to a longer time to cover 100 m (71.96 ± 5.13 s), slower \(\dot{V}{\text{O}}_{ 2}\) kinetics, lower aerobic and anaerobic (lactic and alactic) energy production and lower energy cost.

Conclusion

Despite the short duration of the event, the aerobic energy contribution covers about 50 % of total metabolic energy liberation, highlighting that both aerobic and anaerobic energy processes should be developed to improve the 100 m swimming performance. Lower limbs action provided an important contribution in the energy availability in working muscles being advised its full use in this short duration and very high-intensity event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A:

Oxygen uptake amplitude

AnAl:

Anaerobic alactic

AnL:

Anaerobic lactic

β :

Energy equivalent for blood lactate accumulation

M :

Mass of the subject

min:

Minutes

PCr:

Phosphocreatine concentration

s:

Seconds

S full :

Swimming full body

S upper :

Swimming upper body

t :

Time

\(\dot{V}{\text{O}}_{ 2}\) :

Oxygen uptake

\(\dot{V}{\text{O}}_{{ 2 {\text{b}}}}\) :

Basal oxygen uptake

\(\dot{V}{\text{O}}_{{ 2 {\text{max}}}}\) :

Maximal oxygen uptake

\(\dot{V}O_{\text{peak}}\) :

Peak oxygen uptake

τ :

Time constant

[La]:

Lactate concentration

[La]max :

Maximal lactate concentration

References

  • Bailey SJ, Vanhatalo A, Wilkerson DP, Dimenna FJ, Jones AM (2009) Optimizing the “priming” effect: influence of prior exercise intensity and recovery duration on O2 uptake kinetics and severe-intensity exercise tolerance. J Appl Physiol 107(6):1743–1756. doi:10.1152/japplphysiol.00810.2009

    Article  CAS  PubMed  Google Scholar 

  • Baldari C, Fernandes RJ, Meucci M, Ribeiro J, Vilas-Boas JP, Guidetti L (2013) Is the new AquaTrainer® snorkel valid for V̇O2 assessment in swimming? Int J Sports Med 34(4):336–344. doi:10.1055/s-0032-1321804

    CAS  PubMed  Google Scholar 

  • Binzoni T, Ferretti G, Schenker K, Cerretelli P (1992) Phosphocreatine hydrolysis by 31P-NMR at the onset of constant-load exercise in humans. J Appl Physiol 73(4):1644–1649

    CAS  PubMed  Google Scholar 

  • Burnley M, Jones AM (2007) Oxygen uptake kinetics as a determinant of sports performance. Eur J Sport Sci 7(2):63–79

    Article  Google Scholar 

  • Capelli C, Pendergast DR, Termin B (1998) Energetics of swimming at maximal speeds in humans. Eur J Appl Physiol 78(5):385–393. doi:10.1007/s004210050435

    Article  CAS  Google Scholar 

  • de Jesus K, Guidetti L, de Jesus K, Vilas-Boas JP, Baldari C, Fernandes RJ (2014) Which are the best V̇O2 sampling Intervals to characterize low to severe swimming intensities? Int J Sports Med. doi:10.1055/s-0034-1368784

    PubMed  Google Scholar 

  • di Prampero PE, Pendergast D, Wilson D, Rennie DW (1978) Blood lactic acid concentrations in high velocity swimming. In: Eriksson B, Furberg B (eds) Swimming medicine IV. University Park Press, Baltimore, pp 249–261

    Google Scholar 

  • Fernandes RJ, Vilas-Boas JP (2012) Time to exhaustion at the V̇O2 velocity in swimming: a review. J Hum Kinet 32(1):121–134. doi:10.2478/v10078-012-0029-1

    PubMed Central  PubMed  Google Scholar 

  • Fernandes RJ, Billat VL, Cruz AC, Colaço PJ, Cardoso CS, Vilas-Boas JP (2006) Does net energy cost of swimming affect time to exhaustion at the individual’s maximal oxygen consumption velocity? J Sport Med Phys Fit 46(3):373–380

    CAS  Google Scholar 

  • Figueiredo P, Zamparo P, Sousa A, Vilas-Boas JP, Fernandes RJ (2011) An energy balance of the 200 m front crawl race. Eur J Appl Physiol 111(5):767–777. doi:10.1007/s00421-010-1696-z

    Article  PubMed  Google Scholar 

  • Gatta G, Cortesi M, Di Michele R (2012) Power production of the lower limbs in flutter-kick swimming. Sports Biomech 11(4):480–491. doi:10.1080/14763141.2012.670663

    Article  PubMed  Google Scholar 

  • Gourgoulis V, Boli A, Aggeloussis N, Toubekis A, Antoniou P, Kasimatis P, Vezos N, Michalopoulou M, Kambas A, Mavromatis G (2014) The effect of leg kick on sprint front crawl swimming. J Sports Sci 32(3):278–289. doi:10.1080/02640414.2013.823224

    Article  PubMed  Google Scholar 

  • Holmer I (1974) Energy cost of arm stroke, leg kick, and the whole stroke in competitive swimming styles. Eur J Appl Physiol 33(2):105–118. doi:10.1007/bf00449512

    Article  CAS  Google Scholar 

  • Jones AM, Wilkerson DP, Vanhatalo A, Burnley M (2008) Influence of pacing strategy on O2 uptake and exercise tolerance. Scand J Med Sci Sports 18(5):615–626. doi:10.1111/j.1600-0838.2007.00725.x

    Article  CAS  PubMed  Google Scholar 

  • Koga S, Shiojiri T, Shibasaki M, Fukuba Y, Fukuoka Y, Kondo N (1996) Kinetics of oxygen uptake and cardiac output at onset of arm exercise. Resp Physiol 103(2):195–202. doi:10.1016/0034-5687(95)00082-8

    Article  CAS  Google Scholar 

  • Markovitz GH, Sayre JW, Storer TW, Cooper CB (2004) On issues of confidence in determining the time constant for oxygen uptake kinetics. Brit J Sports Med 38(5):553–560. doi:10.1136/bjsm.2003.004721

    Article  CAS  Google Scholar 

  • Medbo JI (1996) Is the maximal accumulated oxygen deficit an adequate measure of the anaerobic capacity? Can J Appl Physiol 21(5):370–383

    Article  CAS  PubMed  Google Scholar 

  • Ogita F (2006) Energetics in competitive swimming and its application for training. Portuguese J Sports Sci 6:117–121

    Google Scholar 

  • Ogita F, Hara M, Tabata I (1996) Anaerobic capacity and maximal oxygen uptake during arm stroke, leg kicking and whole body swimming. Acta Physiol Scand 157(4):435–441

    Article  CAS  PubMed  Google Scholar 

  • Ogita F, Onodera T, Tamaki H, Toussaint H, Hollander P, Wakayoshi K (2003) Metabolic profile during exhaustive arm stroke, leg kick and whole body swimming lasting 15 s to 10 min. In: Chatard JC (ed) Biomechanics and medicine in swimming IX. Publications de l’Universií de Saint-Étienne, Saint-Étienne, pp 361–367

    Google Scholar 

  • Olbrecht J (2000) The science of winning. Planning, periodizing and optimizing swim training. Swimshop, Luton

  • Pendergast DR (1989) Cardiovascular, respiratory, and metabolic responses to upper body exercise. Med Sci Sports Exerc 21(5 SUPPL):S121–S125

    CAS  PubMed  Google Scholar 

  • Pessoa Filho DM, Alves FB, Reis JF, Greco CC, Denadai BS (2012) VOkinetics during heavy and severe exercise in swimming. Int J Sports Med 33(9):744–748. doi:10.1055/s-0031-1299753

    Article  CAS  PubMed  Google Scholar 

  • Peyrebrune MC, Toubekis AG, Lakomy HKA, Nevill ME (2014) Estimating the energy contribution during single and repeated sprint swimming. Scand J Med Sci Sports 24(2):369–376. doi:10.1111/j.1600-0838.2012.01517.x

    Article  CAS  PubMed  Google Scholar 

  • Reis VM, Marinho DA, Policarpo FB, Carneiro AL, Baldari C, Silva AJ (2010) Examining the accumulated oxygen deficit method in front crawl swimming. Int J Sports Med 31(6):421–427. doi:10.1055/s-0030-1248286

    Article  CAS  PubMed  Google Scholar 

  • Reis JF, Alves FB, Bruno PM, Vleck V, Millet GP (2012a) Effects of aerobic fitness on oxygen uptake kinetics in heavy intensity swimming. Eur J Appl Physiol 112(5):1689–1697

    Article  CAS  PubMed  Google Scholar 

  • Reis JF, Alves FB, Bruno PM, Vleck V, Millet GP (2012b) Oxygen uptake kinetics and middle distance swimming performance. J Sci Med Sport 15(1):58–63. doi:10.1016/j.jsams.2011.05.012

    Article  PubMed  Google Scholar 

  • Reis VM, Santos EL, Oliveira DR, Gon√ßalves LF, Carneiro AL, Fernandes RJ (2013) Oxygen uptake slow component at submaximal swimming. Gazz Med Ital Arch Sci Med 172(7–8):603–610

    Google Scholar 

  • Ribeiro J, Baldari C, Guidetti L, Figueiredo P, Toussaint H, Vilas-Boas JP, Fernandes RJ (2011) Drag assessment in front crawl swimming while using Aquatrainer Snorkel. J Sports Med Phys Fit 51:12

    Google Scholar 

  • Rodriguez FA, Keskinen KL, Keskinen OP, Malvela M (2003) Oxygen uptake kinetics during free swimming: a pilot study. In: Chatard JC (ed) Biomechanics and medicine in swimming IX. Publications de l’Universií de Saint-Étienne, Saint-Étienne, pp 379–385

    Google Scholar 

  • Sahlin K, Henriksson J (1984) Buffer capacity and lactate accumulation in skeletal muscle of trained and untrained men. Acta Physiol Scand 122(3):331–339

    Article  CAS  PubMed  Google Scholar 

  • Secher NH, Volianitis S (2006) Are the arms and legs in competition for cardiac output? Med Sci Sports Exerc 38(10):1797–1803. doi:10.1249/01.mss.0000230343.64000.ac

    Article  PubMed  Google Scholar 

  • Sousa A, Figueiredo P, Oliveira N, Oliveira J, Silva A, Keskinen K, Rodriguez F, Machado L, Vilas-Boas J (2011) Fernandes R (2011) V̇O2 kinetics in 200-m race-pace front crawl swimming. Int J Sports Med 32(10):765–770. doi:10.1055/s-0031-1279772

    Article  CAS  PubMed  Google Scholar 

  • Sousa A, Figueiredo P, Zamparo P, Vilas-Boas JP, Fernandes RJ (2013) Anaerobic alactic energy assessment in middle distance swimming. Eur J Appl Physiol 113(8):2153–2158. doi:10.1007/s00421-013-2646-3

    Article  PubMed  Google Scholar 

  • Sousa A, Vilas Boas JP, Fernandes RJ (2014) V̇O2 kinetics and metabolic contributions whilst swimming at 95, 100, and 105 % of the velocity at V̇O2max. BioMed Res Int. doi:10.1155/2014/675363

    Google Scholar 

  • Toussaint H (2011) Biomechanics of drag and propulsion in front crawl swimming. In: Seifert L, Chollet D, Mujika I (eds) World book of swimming: from science to performance. Nova Science Publishers Inc, New York, pp 3–20

    Google Scholar 

  • Toussaint HM, Beelen A, Rodenburg A, Sargeant AJ, De Groot G, Hollander AP, Van Ingen Schenau GJ (1988) Propelling efficiency of front-crawl swimming. J Appl Physiol 65(6):2506–2512

    CAS  PubMed  Google Scholar 

  • Toussaint HM, Hollander AP, de Groot G, Kahman R, van Ingen Schenau GJ (1990a) Power of leg kicking in front crawl swimming. In: Berme N, Capozzo A (eds) Biomechanics of human movement. Bertec Corporation, Worthington, pp 456–459

    Google Scholar 

  • Toussaint HM, Knops W, De Groot G, Hollander AP (1990b) The mechanical efficiency of front crawl swimming. Med Sci Sports Exerc 22(3):402–408

    CAS  PubMed  Google Scholar 

  • Troup JP (1991) Aerobic: Anaerobic characteristics of the four competitive strokes. In: Troup JP (ed) International center for aquatic research annual. Studies by the international center for aquatic research (1990–1991). US Swimming Press, Colorado Springs, pp 3–7

  • Wakayoshi K, D’Acquisto LJ, Cappaert JM, Troup JP (1995) Relationship between oxygen uptake, stroke rate and swimming velocity in competitive swimming. Int J Sports Med 16(1):19–23

    Article  CAS  PubMed  Google Scholar 

  • Zamparo P, Capelli C, Cautero M, Di Nino A (2000) Energy cost of front-crawl swimming at supra-maximal speeds and underwater torque in young swimmers. Eur J Appl Physiol 83(6):487–491. doi:10.1007/s004210000318

    Article  CAS  PubMed  Google Scholar 

  • Zamparo P, Capelli C, Pendergast D (2011) Energetics of swimming: a historical perspective. Eur J Appl Physiol 111(3):367–378. doi:10.1007/s00421-010-1433-7

    Article  CAS  PubMed  Google Scholar 

  • Zhang YY, Johnson MC 2nd, Chow N, Wasserman K (1991) The role of fitness on V̇O2 and V̇CO2 kinetics in response to proportional step increases in work rate. Eur J Appl Physiol 63(2):94–100. doi:10.1007/BF00235176

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This investigation was supported by grants of Portuguese Science and Technology Foundation: PTDC/DES/101224/2008 (FCOMP-01-0124-FEDER-009577) and SFRH/BD/81337/2011.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The experiments were approved by the local ethics committee, and performed according to the Declaration of Helsinki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ribeiro.

Additional information

Communicated by David C. Poole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, J., Figueiredo, P., Sousa, A. et al. \(\dot{V}{\text{O}}_{ 2}\) kinetics and metabolic contributions during full and upper body extreme swimming intensity. Eur J Appl Physiol 115, 1117–1124 (2015). https://doi.org/10.1007/s00421-014-3093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-3093-5

Keywords

Navigation