Skip to main content
Log in

Exercise intensity and postprandial health outcomes in adolescents

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The effect of exercise intensity and sex on postprandial risk factors for cardiovascular disease in adolescents is unknown. We examined the effect of a single bout of work-matched high-intensity interval exercise (HIIE) and moderate-intensity exercise (MIE) on postprandial triacylglycerol (TAG) and systolic blood pressure (SBP) in adolescents.

Method

Twenty adolescents (10 male, 14.3 ± 0.3 years) completed three 1-day trials: (1) rest (CON); (2) 8 × 1 min cycling at 90 % peak power with 75 s recovery (HIIE); (3) cycling at 90 % of the gas exchange threshold (MIE), 1 h before consuming a high-fat milkshake (1.50 g fat and 80 kJ kg−1). Postprandial TAG, SBP and fat oxidation were assessed over 4 h

Results

Compared to CON, the incremental area under the curve for TAG (IAUC-TAG) was not significantly lowered in HIIE [P = 0.22, effect size (ES) = 0.24] or MIE (P = 0.65, ES = 0.04) for boys. For girls, HIIE and MIE lowered IAUC-TAG by 34 % (P = 0.02, ES = 0.58) and 38 % (P = 0.09, ES = 0.73), respectively, with no difference between HIIE and MIE (P = 0.74, ES = 0.14). Changes in TAG were not related to energy expenditure during exercise or postprandial fat oxidation. Postprandial SBP (total-AUC pooled for both sexes) was lower in HIIE compared to CON (P = 0.01, ES = 0.68) and MIE (P = 0.02, ES = 0.60), with no difference between MIE and CON (P = 0.45, ES = 0.14).

Conclusion

A single bout of HIIE and MIE, performed 1 h before an HFM, can meaningfully attenuate IAUC-TAG in girls but not boys. Additionally, HIIE, but not MIE, may lower postprandial SBP in normotensive adolescents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

95 % CI:

95 % confidence intervals

CON:

Control

CVD:

Cardiovascular disease

EE:

Energy expenditure

ES:

Effect size

HFM:

High-fat meal

HIIE:

High-intensity interval exercise

HR:

Heart rate

IAUC:

Incremental area under the curve vs time

MIE:

Moderate-intensity exercise

PPH:

Postprandial hypertension

PPL:

Postprandial lipaemia

RMR:

Resting metabolic rate

SBP:

Systolic blood pressure

TAG:

Triacylglycerol

TAUC:

Total area under the curve vs time

\({\dot{{V}}}\)O2 :

Oxygen consumption

References

  • Barker AR, Williams CA, Jones AM, Armstrong N (2011) Establishing maximal oxygen uptake in young people during a ramp cycle test to exhaustion. Br J Sports Med 45:498–503

    Article  CAS  PubMed  Google Scholar 

  • Barwell ND, Malkova D, Leggate M, Gill JM (2009) Individual responsiveness to exercise-induced fat loss is associated with change in resting substrate utilization. Metabolism 58:1320–1328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berenson GS, Srinivasan SR, Bao W, Newman WP 3rd, Tracy RE, Wattigney WA (1998) Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med 338:1650–1656

    Article  CAS  PubMed  Google Scholar 

  • Carstensen M, Thomsen C, Hermansen K (2003) Incremental area under response curve more accurately describes the triglyceride response to an oral fat load in both healthy and type 2 diabetic subjects. Metabolism 52:1034–1037

    Article  CAS  PubMed  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioural sciences. Lawrence Erlbaum, Hillsdale

    Google Scholar 

  • Couillard C et al (1999) Gender difference in postprandial lipemia: importance of visceral adipose tissue accumulation. Arterioscler Thromb Vasc Biol 19:2448–2455

    Article  CAS  PubMed  Google Scholar 

  • Frayn KN (1983) Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol 55:628–634

    CAS  PubMed  Google Scholar 

  • Freese EC, Levine AS, Chapman DP, Hausman DB, Cureton KJ (2011) Effects of acute sprint interval cycling and energy replacement on postprandial lipemia. J Appl Physiol 111:1584–1589

    Article  CAS  PubMed  Google Scholar 

  • Gill JM, Herd SL, Hardman AE (2002) Moderate exercise and post-prandial metabolism: issues of dose-response. J Sports Sci 20:961–967

    Article  PubMed  Google Scholar 

  • Henderson GC, Krauss RM, Fattor JA, Faghihnia N, Luke-Zeitoun M, Brooks GA (2010) Plasma triglyceride concentrations are rapidly reduced following individual bouts of endurance exercise in women. Eur J Appl Physiol 109:721–730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41:3–13

    Article  PubMed  Google Scholar 

  • Horton TJ, Commerford SR, Pagliassotti MJ, Bessesen DH (2002) Postprandial leg uptake of triglyceride is greater in women than in men. Am J Physiol Endocrinol Metab 283:E1192–E1202

    Article  CAS  PubMed  Google Scholar 

  • Katsanos CS, Grandjean PW, Moffatt RJ (2004) Effects of low and moderate exercise intensity on postprandial lipemia and postheparin plasma lipoprotein lipase activity in physically active men. J Appl Physiol 96:181–188

    Article  PubMed  Google Scholar 

  • Kolifa M, Petridou A, Mougios V (2004) Effect of prior exercise on lipemia after a meal of moderate fat content. Eur J Clin Nutr 58:1327–1335

    Article  CAS  PubMed  Google Scholar 

  • Magkos F, Patterson BW, Mohammed BS, Klein S, Mittendorfer B (2007) Women produce fewer but triglyceride-richer very low-density lipoproteins than men. J Clin Endocrinol Metab 92:1311–1318

    Article  CAS  PubMed  Google Scholar 

  • Mittendorfer B, Patterson BW, Klein S (2003) Effect of sex and obesity on basal VLDL-triacylglycerol kinetics. Am J Clin Nutr 77:573–579

    CAS  PubMed  Google Scholar 

  • Miyashita M, Burns SF, Stensel DJ (2008) Accumulating short bouts of brisk walking reduces postprandial plasma triacylglycerol concentrations and resting blood pressure in healthy young men. Am J Clin Nutr 88:1225–1231

    CAS  PubMed  Google Scholar 

  • Morris NM, Udry JR (1980) Validation of a self-administered instrument to assess stage of adolescent development. J Youth Adolesc 9:271–280

    Article  CAS  PubMed  Google Scholar 

  • Motl RW, Dishman RK, Saunders R, Dowda M, Felton G, Pate RR (2001) Measuring enjoyment of physical activity in adolescent girls. Am J Prev Med 21:110–117

    Article  CAS  PubMed  Google Scholar 

  • Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A (2007) Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 298:299–308

    Article  CAS  PubMed  Google Scholar 

  • Pedersen A, Marckmann P, Sandstrom B (1999) Postprandial lipoprotein, glucose and insulin responses after two consecutive meals containing rapeseed oil, sunflower oil or palm oil with or without glucose at the first meal. Br J Nutr 82:97–104

    CAS  PubMed  Google Scholar 

  • Petitt DS, Arngrimsson SA, Cureton KJ (2003) Effect of resistance exercise on postprandial lipemia. J Appl Physiol 94:694–700

    Article  PubMed  Google Scholar 

  • Pfeiffer M, Wenk C, Colombani PC (2006) The influence of 30 min of light to moderate intensity cycling on postprandial lipemia. Eur J Cardiovasc Prev Rehabil 13:363–368

    PubMed  Google Scholar 

  • Riddoch CJ et al (2007) Objective measurement of levels and patterns of physical activity. Arch Dis Child 92:963–969

    Article  PubMed Central  PubMed  Google Scholar 

  • Sedgwick MJ, Morris JG, Nevill ME, Tolfrey K, Nevill A, Barrett LA (2012) Effect of exercise on postprandial endothelial function in adolescent boys. Br J Nutr 110:1–9

    Google Scholar 

  • Seip RL, Semenkovich CF (1998) Skeletal muscle lipoprotein lipase: molecular regulation and physiological effects in relation to exercise. Exerc Sport Sci Rev 26:191–218

    CAS  PubMed  Google Scholar 

  • Sisson S, Anderson AE, Short KR, Gardner AW, Whited T, Robledo C, Thompson DM (2013) Light activity following a meal and post-prandial cardiometabolic risk in adolescents. Pediatr Exerc Sci 25:347–359

    PubMed  Google Scholar 

  • Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, Bemben DA (1988) Skinfold equations for estimation of body fatness in children and youth. Hum Biol 60:709–723

    CAS  PubMed  Google Scholar 

  • Stary HC (1989) Evolution and progression of atherosclerotic lesions in coronary arteries of children and young adults. Arteriosclerosis 9:I19–I132

    CAS  PubMed  Google Scholar 

  • Stringer W, Casaburi R, Wasserman K (1992) Acid-base regulation during exercise and recovery in humans. J Appl Physiol 72:954–961

    CAS  PubMed  Google Scholar 

  • Thackray AE, Barrett LA, Tolfrey K (2013) Acute high-intensity interval running reduces postprandial lipemia in boys. Med Sci Sports Exerc 45:1277–1284

    Article  CAS  PubMed  Google Scholar 

  • Tolfrey K, Doggett A, Boyd C, Pinner S, Sharples A, Barrett L (2008) Postprandial triacylglycerol in adolescent boys: a case for moderate exercise. Med Sci Sports Exerc 40:1049–1056

    Article  CAS  PubMed  Google Scholar 

  • Tolfrey K, Bentley C, Goad M, Varley J, Willis S, Barrett L (2012) Effect of energy expenditure on postprandial triacylglycerol in adolescent boys. Eur J Appl Physiol 112:23–31

    Article  CAS  PubMed  Google Scholar 

  • Tolfrey K, Engstrom A, Murphy C, Thackray A, Weaver R, Barrett LA (2013) Exercise energy expenditure and postprandial lipaemia in girls. Med Sci Sports Exerc 46:239–246

    Article  Google Scholar 

  • Tolfrey K, Thackray AE, Barrett LA (2014) Acute exercise and postprandial lipemia in young people. Pediatr Exerc Sci 26:127–137

    Article  PubMed  Google Scholar 

  • Trombold JRPD, Christmas KM, Machin DR, Kim IY, Coyle EF (2013) acute high-intensity endurance exercise is more effective than moderate-intensity exercise for attenuation of postprandial triglyceride elevation. J Appl Physiol 114:792–800

    Article  CAS  PubMed  Google Scholar 

  • Uetani E et al (2012) Postprandial hypertension, an overlooked risk marker for arteriosclerosis. Atherosclerosis 224:500–505

    Article  CAS  PubMed  Google Scholar 

  • Vogel RA, Corretti MC, Plotnick GD (1997) Effect of a single high-fat meal on endothelial function in healthy subjects. Am J Cardiol 79:350–354

    Article  CAS  PubMed  Google Scholar 

  • Weiss EP, Fields DA, Mittendorfer B, Haverkort MA, Klein S (2008) Reproducibility of postprandial lipemia tests and validity of an abbreviated 4-h test. Metabolism 57:1479–1485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whyte LJ, Ferguson C, Wilson J, Scott RA, Gill JM (2012) Effects of single bout of very high-intensity exercise on metabolic health biomarkers in overweight/obese sedentary men. Metabolism 62:212–219

    Article  PubMed  Google Scholar 

  • Yelling M, Lamb KL, Swaine IL (2002) Validity of a pictorial perceived exertion scale for effort estimation and effort production during stepping exercise in adolescent children. Eur Phys Edu Rev 8:157–175

    Article  Google Scholar 

  • Zakrzewski JK, Tolfrey K (2012) Acute effect of Fatmax exercise on the metabolism in overweight and nonoverweight girls. Med Sci Sports Exerc 44:1698–1705

    Article  CAS  PubMed  Google Scholar 

  • Zhang JQ, Thomas TR, Ball SD (1998) Effect of exercise timing on postprandial lipemia and HDL cholesterol subfractions. J Appl Physiol 85:1516–1522

    CAS  PubMed  Google Scholar 

  • Zilversmit DB (1979) Atherogenesis: a postprandial phenomenon. Circulation 60:473–485

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the staff and participants at Exmouth Community College, Devon, UK for their participation in this project. This study was supported by the Sport and Health Sciences Research Committee, College of Life and Environmental Sciences, University of Exeter.

Conflict of interest

The authors confirm the absence of any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan R. Barker.

Additional information

Communicated by Massimo Pagani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bond, B., Williams, C.A., Isic, C. et al. Exercise intensity and postprandial health outcomes in adolescents. Eur J Appl Physiol 115, 927–936 (2015). https://doi.org/10.1007/s00421-014-3074-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-3074-8

Keywords

Navigation