Skip to main content
Log in

\( \dot{V}_{{{\text{O}}_{2} { \max }}} \) is not altered by self-pacing during incremental exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 11 December 2012

Abstract

We tested the hypothesis that incremental cycling to exhaustion that is paced using clamps of the rating of perceived exertion (RPE) elicits higher \( \dot{V}_{{{\text{O}}_{2} { \max }}} \) values compared to a conventional ramp incremental protocol when test duration is matched. Seven males completed three incremental tests to exhaustion to measure \( \dot{V}_{{{\text{O}}_{2} { \max }}} \). The incremental protocols were of similar duration and included: a ramp test at 30 W min−1 with constant cadence (RAMP1); a ramp test at 30 W min−1 with cadence free to fluctuate according to subject preference (RAMP2); and a self-paced incremental test in which the power output was selected by the subject according to prescribed increments in RPE (SPT). The subjects also completed a \( \dot{V}_{{{\text{O}}_{2} { \max }}} \) ‘verification’ test at a fixed high-intensity power output and a 3-min all-out test. No difference was found for \( \dot{V}_{{{\text{O}}_{2} { \max }}} \) between the incremental protocols (RAMP1 = 4.33 ± 0.60 L min−1; RAMP2 = 4.31 ± 0.62 L min−1; SPT = 4.36 ± 0.59 L min−1; P > 0.05) nor between the incremental protocols and the peak \( \dot{V}_{{{\text{O}}_{2} }} \) measured during the 3-min all-out test (4.33 ± 0.68 L min−1) or the \( \dot{V}_{{{\text{O}}_{2} { \max }}} \) measured in the verification test (4.32 ± 0.69 L min−1). The integrated electromyogram, blood lactate concentration, heart rate and minute ventilation at exhaustion were not different (P > 0.05) between the incremental protocols. In conclusion, when test duration is matched, SPT does not elicit a higher \( \dot{V}_{{{\text{O}}_{2} { \max }}} \) compared to conventional incremental protocols. The striking similarity of \( \dot{V}_{{{\text{O}}_{2} { \max }}} \) measured across an array of exercise protocols indicates that there are physiological limits to the attainment of \( \dot{V}_{{{\text{O}}_{2} { \max }}} \) that cannot be exceeded by self-pacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Astorino TA, Rietschel JC, Tam PA, Taylor K, Johnson SM, Freedman TP, Sakarya CE (2004) Reinvestigation of optimal duration of \( \dot{V}_{{{\text{O}}_{2} { \max }}} \) testing. J Exerc Physiol Online 7:1–8

    Google Scholar 

  • Bassett DR Jr, Howley ET (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 32:70–84

    PubMed  Google Scholar 

  • Beltrami F, Froyd C, Mauger AR, Metcalfe AJ, Marino F, Noakes TD (2012) Conventional testing methods produce submaximal values of oxygen consumption. Br J Sports Med 46:23–29

    Article  PubMed  Google Scholar 

  • Bogaard HJ, Woltjer HH, van Keimpema AR, Serra RA, Postmus PE, de Vries PMJM (1996) Comparison of the respiratory and hemodynamic responses of healthy subjects to exercise in three different protocols. Occup Med 46:293–298

    Article  CAS  Google Scholar 

  • Buchfuhrer MJ, Hansen JE, Robinson TE, Sue DY, Wasserman K, Whipp BJ (1983) Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol 55:1558–1564

    PubMed  CAS  Google Scholar 

  • Burnley M, Jones AM (2007) Oxygen uptake kinetics as a determinant of sports performance. Eur J Sport Sci 7:63–79

    Article  Google Scholar 

  • Burnley M, Doust JH, Vanhatalo A (2006) A 3-min all-out test to determine peak oxygen uptake and the maximal steady state. Med Sci Sports Exerc 38:1995–2003

    Article  PubMed  Google Scholar 

  • Chidnok W, DiMenna FJ, Bailey SJ, Vanhatalo A, Morton RH, Wilkerson DP, Jones AM (2012) Exercise tolerance in intermittent cycling: application of the critical power concept. Med Sci Sports Exerc 44:966–976

    Article  PubMed  Google Scholar 

  • Copp SW, Hirai DM, Musch TI, Poole DC (2010) Critical speed in the rat: implications for hindlimb muscle blood flow distribution and fibre recruitment. J Physiol 588:5077–5087

    Article  PubMed  CAS  Google Scholar 

  • Davis JA, Whipp BJ, Lamarra N, Huntsman DJ, Frank MH, Wasserman K (1982) Effect of ramp slope on determination of aerobic parameters from the ramp exercise test. Med Sci Sports Exerc 14:339–343

    PubMed  CAS  Google Scholar 

  • Davison RCR, Corbett J, Ansley L (2009) Influence of temperature and protocol on the calibration of the Computrainer electromagnetically braked cycling ergometer. Int Sportmed J 10:66–76

    Google Scholar 

  • Day JR, Rossiter HB, Coats EM, Skasick A, Whipp BJ (2003) The maximally attainable \( \dot{V}_{{{\text{O}}_{2} }} \) during exercise in humans: the peak vs. maximum issue. J Appl Physiol 95:1901–1907

    Google Scholar 

  • Doherty M, Nobbs L, Noakes TD (2003) Low frequency of the “plateau phenomenon” during maximal exercise in elite British athletes. Eur J Appl Physiol 89:619–623

    Article  PubMed  CAS  Google Scholar 

  • Eston RG (2012) Use of ratings of perceived exertion in sports. Int J Sports Physiol Perform 7:175–182

    PubMed  Google Scholar 

  • Gonzalez-Alonso J, Calbet JAL (2003) Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation 28:824–830

    Article  Google Scholar 

  • Hawkins MN, Raven PB, Snell PG, Stray-Gundersen J, Levine BD (2007) Maximal oxygen uptake as a parametric measure of cardiorespiratory capacity. Med Sci Sports Exerc 39:103–107

    Article  PubMed  Google Scholar 

  • Hill AV, Lupton H (1923) Muscular exercise, lactic acid and the supply and utilization of oxygen. Q J Med 16:135–171

    Article  CAS  Google Scholar 

  • Hill AV, Long CNH, Lupton H (1924) Muscular exercise, lactic acid and the supply and utilization of oxygen. Proc R Soc B Biol Sci 96:438–475

    Article  CAS  Google Scholar 

  • Jones AM, Wilkerson DP, DiMenna F, Fulford J, Poole DC (2008) Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. Am J Physiol Regul Integr Comp Physiol 294:585–593

    Article  Google Scholar 

  • Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC (2010) Critical power: implications for determination of \( \dot{V}_{{{\text{O}}_{2} { \max }}} \) and exercise tolerance. Med Sci Sports Exerc 42:1876–1890

    Google Scholar 

  • Maksud MG, Coutts KD (1971) Comparison of a continuous and discontinuous graded treadmill test for maximal oxygen uptake. Med Sci Sports 3:63–65

    PubMed  CAS  Google Scholar 

  • Mauger AR, Sculthorpe N (2012) A new \( \dot{V}_{{{\text{O}}_{2} { \max }}} \) protocol allowing self-pacing in maximal incremental exercise. Br J Sports Med 46:59–63

    Google Scholar 

  • McArdle WD, Katch FI, Pechar GS (1973) Comparison of continuous and discontinuous treadmill and bicycle tests for max \( \dot{V}_{{{\text{O}}_{2} }} \). Med Sci Sports Exerc 5:156–160

    Google Scholar 

  • McCole SD, Davis AM, Fueger PT (2001) Is there a dissociation of maximal oxygen consumption and maximal cardiac output? Med Sci Sports Exerc 33:1265–1269

    Article  PubMed  CAS  Google Scholar 

  • Midgley AW, McNaughton LR, Polman R, Marchant D (2007) Criteria for determination of maximal oxygen uptake: a brief critique and recommendations for future research. Sports Med 37:1019–1028

    Article  PubMed  Google Scholar 

  • Midgley AW, Bentley DJ, Luttikholt H, McNaughton LR, Millet GP (2008) Challenging a dogma of exercise physiology: does an incremental exercise test for valid \( V_{{{\text{O}}_{2} { \max }}} \) determination really need to last between 8 and 12 minutes? Sports Med 38:441–447

    Google Scholar 

  • Mitchell JH, Sproule BJ, Chapman CB (1958) The physiological meaning of the maximal oxygen intake test. J Clin Invest 37:538–547

    Article  PubMed  CAS  Google Scholar 

  • Monod H, Scherrer J (1965) The work capacity of a synergic muscular group. Ergonomics 8:329–338

    Article  Google Scholar 

  • Mortensen SP, Dawson EA, Yoshiga CC, Dalsgaard MK, Damsgaard R, Secher NH, González-Alonso J (2005) Limitations to systemic and locomotor limb muscle oxygen delivery and uptake during maximal exercise in humans. J Physiol 566:273–285

    Article  PubMed  CAS  Google Scholar 

  • Mortensen SP, Damsgaard R, Dawson EA, Secher NH, González-Alonso J (2008) Restrictions in systemic and locomotor skeletal muscle perfusion, oxygen supply and \( V_{{{\text{O}}_{2} }} \) during high-intensity whole-body exercise in humans. J Physiol 586:2621–2635

    Google Scholar 

  • Morton RH, Green S, Bishop D, Jenkins DG (1997) Ramp and constant power trials produce equivalent critical power estimates. Med Sci Sports Exerc 29:833–836

    Article  PubMed  CAS  Google Scholar 

  • Noakes TD (2008) Testing for maximum oxygen consumption has produced a brainless model of human exercise performance. Br J Sports Med 42:551–555

    Article  PubMed  CAS  Google Scholar 

  • Noakes TD (2012) The Central Governor Model in 2012: eight new papers deepen our understanding of the regulation of human exercise performance. Br J Sports Med 46:1–3

    Article  Google Scholar 

  • Noakes TD, Marino FE (2009) Maximal oxygen uptake is limited by a central nervous system governor. J Appl Physiol 106:338–339

    Article  PubMed  Google Scholar 

  • Noakes TD, Peltonen JE, Rusko HK (2001) Evidence that a central governor regulates performance during acute hypoxia and hyperoxia. J Exp Biol 204:3225–3234

    PubMed  CAS  Google Scholar 

  • Poole DC, Ward SA, Gardner GW, Whipp BJ (1988) Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics 31:1265–1279

    Article  PubMed  CAS  Google Scholar 

  • Rossiter HB, Kowalchuk JM, Whipp BJ (2006) A test to establish maximum O2 uptake despite no plateau in the O2 uptake response to ramp incremental exercise. J Appl Physiol 100:764–770

    Article  PubMed  CAS  Google Scholar 

  • Saltin B, Calbet JA (2006) Point: in health and in a normoxic environment, \( V_{{{\text{O}}_{2} { \max }}} \) is limited primarily by cardiac output and locomotor muscle blood flow. J Appl Physiol 100:744–745

    Google Scholar 

  • Scheuermann BW, Tripse McConnell JH, Barstow TJ (2002) EMG and oxygen uptake responses during slow and fast ramp exercise in humans. Exp Physiol 87:91–100

    Article  PubMed  Google Scholar 

  • Takaishi T, Ono T, Yasuda Y (1992) Relationship between muscle fatigue and oxygen uptake during cycle ergometer exercise with different ramp slope increments. Eur J Appl Physiol 65:335–339

    Article  CAS  Google Scholar 

  • Taylor HL, Buskirk E, Henschel A (1955) Maximal oxygen intake as an objective measure of cardiorespiratory performance. J Appl Physiol 8:73–80

    PubMed  CAS  Google Scholar 

  • Vanhatalo A, Doust JH, Burnley M (2007) Determination of critical power using a 3-min all-out cycling test. Med Sci Sports Exerc 39:548–555

    Article  PubMed  Google Scholar 

  • Vanhatalo A, Fulford J, DiMenna FJ, Jones AM (2010) Influence of hyperoxia on muscle metabolic responses and the power-duration relationship during severe-intensity exercise in humans: a 31P magnetic resonance spectroscopy study. Exp Physiol 95:528–540

    Article  PubMed  CAS  Google Scholar 

  • Wagner PD (2000) New ideas on limitations to \( \dot{V}_{{{\text{O}}_{2} { \max }}} \). Exerc Sport Sci Rev 28:10–14

    Google Scholar 

  • Wasserman K, Hansen JE, Sue DY, Whipp BJ, Casaburi R (1994) Principles of exercise testing and interpretation, 2nd edn. Lea and Febiger, London, pp 1–479

    Google Scholar 

  • Whipp BJ, Davis JA, Torres F, Wasserman K (1981) A test to determine parameters of aerobic function during exercise. J Appl Physiol 50:217–221

    PubMed  CAS  Google Scholar 

  • Yoon BK, Kravitz L, Robergs R (2007) \( \dot{V}_{{{\text{O}}_{2} { \max }}} \), protocol duration, and the \( \dot{V}_{{{\text{O}}_{2} }} \) plateau. Med Sci Sports Exerc 39:1186–1192

  • Zhang YY, Johnson MC, Chow N, Wasserman K (1991) Effect of exercise testing protocol on parameters of aerobic function. Med Sci Sports Exerc 23:625–630

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Jones.

Additional information

Communicated by David C. Poole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chidnok, W., DiMenna, F.J., Bailey, S.J. et al. \( \dot{V}_{{{\text{O}}_{2} { \max }}} \) is not altered by self-pacing during incremental exercise. Eur J Appl Physiol 113, 529–539 (2013). https://doi.org/10.1007/s00421-012-2478-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2478-6

Keywords

Navigation