Skip to main content
Log in

Distinctive bronchial inflammation status in athletes: basophils, a new player

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The aim of the study was to establish bronchial inflammation status and to measure eicosanoids in sputum obtained from active elite athletes. A total of 68 subjects were enrolled. Twelve were non-athletes and non-asthmatic (NAtNAs), 21 non-athlete asthmatics (NAtAs), 11 athlete non-asthmatics (AtNAs), and 24 athletes with asthma (AtAs) with positive indirect or direct bronchial challenges. Induced sputum was used to measure cells and eicosanoids. Sputum differential cell counts in all the subject groups revealed eosinophilia with the exception of NAtNAs control subjects. Athletes with and without diagnosed asthma showed a significant increase in bronchial epithelial cells and lymphocytes present in their sputum. Also, flow cytometry revealed that a significantly higher number of basophils were present in sputum from athletes (without and with asthma) when compared with non-athletes (without and with asthma). Asthmatic athletes and non-athletes showed a higher increase in LTC4 levels and PGE2 metabolites in sputum when compared with healthy controls. The present study identifies basophils as a new player present in athletes bronchial inflammation defining athlete status and not necessarily associated with exercise-induced bronchoconstriction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aitken ML, Greene KE, Tonelli MR et al (2003) Analysis of sequential aliquots of hypertonic saline solution-induced sputum from clinically stable patients with cystic fibrosis. Chest 123:792–799

    Article  PubMed  Google Scholar 

  • American Thoracic Society. Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease (COPD) and asthma (1987) This official statement of the American Thoracic Society was adopted by the ATS Boards of Directors, November 1986. Am Rev Respir Dis 136:225–244

    Google Scholar 

  • Anderson SD, Daviskas E (2000) The mechanism of exercise-induced asthma is …. J Allergy Clin Immunol 106:453–459

    Article  PubMed  CAS  Google Scholar 

  • Anderson SD, Argyros GJ, Magnussen H et al (2001) Provocation by eucapnic voluntary hyperpnoea to identify exercise induced bronchoconstriction. Br J Sports Med 35:344–347

    Article  PubMed  CAS  Google Scholar 

  • Anderson SD, Brannan JD (2003) Methods for “indirect” challenge tests including exercise, eucapnic voluntary hyperpnea, and hypertonic aerosols. Clin Rev Allergy Immunol 24:27–54

    Article  PubMed  Google Scholar 

  • Anderson SD, Kippelen P (2008) Airway injury as a mechanism for exercise-induced bronchoconstriction in elite athletes. J Allergy Clin Immunol 122:225–235

    Article  PubMed  Google Scholar 

  • Anderson SD, Brannan JD (2011) Bronchial provocation testing: the future. Curr Opin Allergy Clin Immunol 11:46–52

    Article  PubMed  Google Scholar 

  • Andregnette-Roscigno V, Fernández-Nieto M, García Del Potro M et al (2010) Methacholine is more sensitive than mannitol for evaluation of bronchial hyperresponsiveness in asthmatic children. J Allergy Clin Immunol 126:869–871

    Article  PubMed  Google Scholar 

  • Bolger C, Tufvesson E, Anderson SD et al (2011) The effect of inspired air conditions on exercise-induced bronchoconstriction and urinary CC16 levels in athletes. J Appl Physiol 111:1059–1065

    Article  PubMed  CAS  Google Scholar 

  • Boniface S, Koscher V, Mamessier E et al (2003) Assessment of T lymphocyte cytokine production in induced sputum from asthmatics: a flow cytometry study. Clin Exp Allergy 33:1238–1243

    Article  PubMed  CAS  Google Scholar 

  • Bonsignore MR, Morici G, Vignola AM et al (2003) Increased airway inflammatory cells in endurance athletes: what do they mean? Clin Exp Allergy 33:14–21

    Article  PubMed  CAS  Google Scholar 

  • Bougault V, Turmel J, St-Laurent J et al (2009) Asthma, airway inflammation and epithelial damage in swimmers and cold-air athletes. Eur Respir J 33:740–746

    Article  PubMed  CAS  Google Scholar 

  • Bougault V, Turmel J, Boulet LP (2011) Airway hyperresponsiveness in elite swimmers: is it a transient phenomenon? J Allergy Clin Immunol 127:892–898

    Article  PubMed  Google Scholar 

  • Carlsen KH, Kowalski ML (2008) Asthma, allergy, the athlete and the Olympics. Allergy 63:383–386

    Article  PubMed  Google Scholar 

  • Carlsen KH, Anderson SD, Bjermer L et al (2008) European Respiratory Society; European Academy of Allergy and Clinical Immunology. Exercise-induced asthma, respiratory and allergic disorders in elite athletes: epidemiology, mechanisms and diagnosis: part I of the report from the Joint Task Force of the European Respiratory Society (ERS) and the European Academy of Allergy and Clinical Immunology (EAACI) in cooperation with GA2LEN. Allergy 63:387–403

    Article  PubMed  CAS  Google Scholar 

  • Denzel A, Maus UA, Rodriguez Gomez M et al (2008) Basophils enhance immunological memory responses. Nat Immunol 9:733–742

    Article  PubMed  CAS  Google Scholar 

  • Domínguez-Ortega J, León F, Martínez Alonso JC et al (2004) Fluorocytometric analysis of induced sputum cells in an asthmatic population. J Invest Allergol Clin Immunol 14:108–113

    Google Scholar 

  • Efthimiadis A, Spanevello A, Hamid Q et al (2002) Methods of sputum processing for cell counts, immunocytochemistry and in situ hybridisation. Eur Respir J 20:19s–23s

    Article  Google Scholar 

  • Fahy JV (2001) Remodeling of the airway epithelium in asthma. Am J Respir Crit Care Med 164:546–551

    Google Scholar 

  • Fernández-Nieto M, Sastre B, Sastre J et al (2009) Changes in sputum eicosanoids and inflammatory markers after inhalation challenges with occupational agents. Chest 136:1308–1315

    Article  PubMed  Google Scholar 

  • Global strategy for asthma management and prevention (2002) Update from NHLB/WHO Workshop Report GINA, revised 2002, NIH Publication No. 02-3659

  • Hallstrand TS, Moody MW, Wurfel MM et al (2005) Inflammatory basis of exercise induced bronchoconstriction. Am J Respir Crit Care Med 172:679–686

    Article  PubMed  Google Scholar 

  • Hallstrand TS, Debley JS, Farin FM et al (2007) Role of MUC5AC in the pathogenesis of exercise-induced bronchoconstriction. J Allergy Clin Immunol 119:1092–1098

    Article  PubMed  CAS  Google Scholar 

  • Hallstrand TS, Henderson WR Jr (2009) Role of leukotrienes in exercise-induced bronchoconstriction. Curr Allergy Asthma Rep 9:18–25

    Article  PubMed  CAS  Google Scholar 

  • Helenius IJ, Tikkanen HO, Sarna S et al (1998) Asthma and increased bronchial responsiveness in elite athletes: atopy and sport event as risk factors. J Allergy Clin Immunol 101:646–652

    Article  PubMed  CAS  Google Scholar 

  • Helenius I, Haahtela T (2000) Allergy and asthma in elite summer sport athletes. J Allergy Clin Immunol 106:444–452

    Article  PubMed  CAS  Google Scholar 

  • Hening NR, Aitken ML, Liu MC et al (2000) Effect of recombinant human platelet-activating factor-acetylhydrolase on allergen-induced asthmatic responses. Am J Respir Crit care Med 162:523–527

    Google Scholar 

  • Kanazawa H, Asai K, Hirata K et al (2002) Vascular involvement in exercise-induced airway narrowing in patients with bronchial asthma. Chest 122:166–170

    Article  PubMed  Google Scholar 

  • Karasuyama H, Mukai K, Tsujimura Y et al (2009) Newly discovered roles for basophils: a neglected minority gains new respect. Nat Rev Immunol 9:9–13

    Article  PubMed  CAS  Google Scholar 

  • Lumme A, Haahtela T, Öunap J et al (2003) Airway inflammation, bronchial hyperresponsiveness and asthma in elite ice hockey players. Eur Respir J 22:113–117

    Article  PubMed  CAS  Google Scholar 

  • Lund TK, Pedersen L, Anderson SD (2009) Are asthma-like symptoms in elite athletes associated with classical features of asthma? Br J Sports Med 43:1131–1135

    Article  PubMed  CAS  Google Scholar 

  • McFadden ER Jr (1990) Hypothesis: exercise-induced asthma as a vascular phenomenon. Lancet 335:880–883

    Article  PubMed  Google Scholar 

  • MacFarlane AJ, Dworski R, Sheller JR et al (2000) Sputum cysteinyl leukotrienes increase 24 hours after allergen inhalation in atopic asthmatics. Am J Respir Crit Care Med 161:1553–1558

    PubMed  CAS  Google Scholar 

  • Morici G, Bonsignore MR, Zangla D et al (2004) Airway cell composition at rest and after an all-out test in competitive rowers. Med Sci Sports Exerc 36:1723–1729

    Article  PubMed  Google Scholar 

  • Pavord ID, Ward R, Woltmann G et al (1999) Induced sputum eicosanoid concentrations in asthma. Am J Respir Crit Care Med 160:1905–1909

    PubMed  CAS  Google Scholar 

  • Pin I, Gibson PG, Kolendowicz R et al (1992) Use of induced sputum cell counts to investigate airway inflammation in asthma. Thorax 47:25–29

    Article  PubMed  CAS  Google Scholar 

  • Pizzichini E, Pizzichini MM, Efthimiadis A et al (1996) Indices of airway inflammation in induced sputum: reproducibility and validity of cell and fluid-phase measurements. Am J Respir Crit Care Med 154:308–317

    PubMed  CAS  Google Scholar 

  • Sacha JJ, Quinn JM (2011) The environment, the airway, and the athlete. Ann Allergy Asthma Immunol 106:81–88

    Article  PubMed  Google Scholar 

  • Sastre B, Fernández-Nieto M, Mollá R et al (2008) Increased prostaglandin E2 levels in the airway of patients with eosinophilic bronchitis. Allergy 63:58–66

    Article  PubMed  CAS  Google Scholar 

  • Sastre J, Fernandez-Nieto M, Novalbos A et al (2003) Need for monitoring nonspecific bronchial hyperresponsiveness before and after isocyanate inhalation challenge. Chest 123:1276–1279

    Article  PubMed  Google Scholar 

  • Schroder JT (2011) Basophils: emerging roles in the pathogenesis of allergic disease. Immunol Rev 242:144–160

    Article  Google Scholar 

  • Sue-Chu M, Brannan JD, Anderson SD et al (2010) Airway hyperresponsiveness to methacholine, adenosine 5-monophosphate, mannitol, eucapnic voluntary hyperpnoea and field exercise challenge in elite cross-country skiers. Br J Sports Med 44:827–832

    Article  PubMed  Google Scholar 

  • Thomas RA, Green RH, Brightling CE et al (2004) The influence of age on induced sputum differential cell counts in normal subjects. Chest 126:1811–1814

    Article  PubMed  Google Scholar 

  • Verges S, Devouassoux G, Flore P et al (2005) Bronchial hyperresponsivness airway inflammation, and airway limitation in endurance athletes. Chest 127:1935–1941

    Article  PubMed  Google Scholar 

  • Yoshikawa T, Shoji S, Fujii T et al (1998) Severity of exercise-induced bronchoconstriction is related to airway eosinophilic inflammation in patients with asthma. Eur Respir J 12:879–884

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Universidad Europea de Madrid (Cátedra Real Madrid) and CIBER de Enfermedades Respiratorias (CIBERES), an initiative of Carlos III Institute of Health. The authors recognize Oliver Shaw for his revision and editing in English and Ignacio Mahillo for statistical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria del Pozo.

Additional information

Communicated by Fabio Fischetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sastre, B., Fernández-Nieto, M., Rodríguez-Nieto, M.J. et al. Distinctive bronchial inflammation status in athletes: basophils, a new player. Eur J Appl Physiol 113, 703–711 (2013). https://doi.org/10.1007/s00421-012-2475-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2475-9

Keywords

Navigation