Skip to main content
Log in

Urine citrate and 6-sulfatoximelatonin excretion during a training season in top kayakers

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The effects of high training loads during the competitive kayaking season may be reflected in urinary citrate and 6-sulfatoxymelatonin (αMT6S) excretion. The present study aims to evaluate the influence of a training program on citrate and αMT6S excretion in 12 elite kayakers. Urine samples were collected (before bedtime and again in the morning, at first voiding) at the beginning of the season (second half of October), during the macrocycle (specific training period; first week of June), and tapering (precompetitive training period; first week of July) stages. During the training season, urine citrate values (mg/L) were higher in the evening than in the morning in all stages (p < 0.01). The data obtained in the evening showed the lowest significant values (p < 0.05) in the beginning stage compared with the macrocycle and tapering stages. The values obtained in the morning showed the lowest significance (p < 0.05) in the macrocycle stage compared to the beginning and the tapering stages. In all stages, αMT6S (ng/mL) evening values were significantly lower (p < 0.05) than the morning values. The morning/evening ratio, total sum, and nocturnal increment of αMT6S did not vary across the training stages. From these results, it can be deduced that the pineal function is unaltered and that citrate turnover is good in elite kayakers during the training season. It was found that urine citrate and αMT6S obtained by non-invasive techniques may be used as major markers to evaluate metabolic recovery and stress produced by the training season workload in elite kayakers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arendt J, Bojkowski C, Franey C, Wright J, Marks V (1985) Immunoassay of 6-hydroxymelatonin sulfate in human plasma and urine: abolition of the urinary 24-hour rhythm with atenolol. J Clin Endocrinol Metab 60:1166–1173

    Article  PubMed  CAS  Google Scholar 

  • Arendt J (1988) Melatonin. Clin Endocrinol 29:205–229

    Google Scholar 

  • Atkinson G, Drust B, Reilly T, Waterhouse J (2003) The relevance of melatonin to sports medicine and science. Sports Med 33:809–831

    Article  PubMed  Google Scholar 

  • Axelrod J, Shein HM, Wurtman RJ (1969) Stimulation of C14-melatonin synthesis from C14-tryptophan by noradrenaline in rat pineal in organ culture. Proc Natl Acad Sci USA 62:544–549

    Article  PubMed  CAS  Google Scholar 

  • Balsom PD, Seger JY, Sjödin B, Ekblom B (1992) Maximal-intensity intermittent exercise: effect of recovery duration. Int J Sports Med 13:528–533

    Article  PubMed  CAS  Google Scholar 

  • Barnett C, Carey M, Proietto J, Cerin E, Febbraio MA, Jenkins D (2004) Muscle metabolism during sprint exercise in man: influence of sprint training. J Sci Med Sport 7:314–322

    Article  PubMed  CAS  Google Scholar 

  • Brownstein M, Axelrod J (1974) Pineal gland: 24-hour rhythm in norepinephrine turnover. Science 184:163–165

    Article  PubMed  CAS  Google Scholar 

  • Carr DB, Reppert S, Bullen B, Skrinar G, Beitins I, Arnold M, Rosenblatt M, Martin JB, McArthur JW (1981) Plasma melatonin increases with exercise. Clin J Endocrinol Metab 53:224–225

    Article  CAS  Google Scholar 

  • Christensen NJ, Galbo H (1983) Sympathetic nervous activity during exercise. Annu Rev Physiol 45:139–153

    Article  PubMed  CAS  Google Scholar 

  • Constantin-Teodosiu D, Greenhaff PL (1999) The tricarboxylic cycle in human muscle: is there a role for nutritional intervention? Curr Opin Clin Nutr Metab Care 2:527–531

    Article  PubMed  CAS  Google Scholar 

  • Cook MR, Graham C, Kavet R, Stevens RG, Davis S, Kheifets L (2000) Morning urinary assessment of nocturnal melatonin secretion in older women. J Pineal Res 28:41–47

    Article  PubMed  CAS  Google Scholar 

  • De Feo P, Di Loreto C, Lucidi P, Murdolo G, Parlanti N, De Cicco A, Piccioni F, Santeusanio F (2003) Metabolic response to exercise. J Endocrinol Invest 26:851–854

    PubMed  Google Scholar 

  • Díaz B, García R, Colmenero MD, Terrados N, Fernández B, Marín B (1993) Melatonin and gonadotropin hormones in pubertal sportsgirls. Rev Esp Fisiol 49:17–22

    PubMed  Google Scholar 

  • Drijfhout WJ, Grol CJ, Westerink BH (1996a) Parasympathetic inhibition of pineal indole metabolism by prejunctional modulation of noradrenaline release. Eur J Pharmacol 308:117–124

    Article  PubMed  CAS  Google Scholar 

  • Drijfhout WJ, van der Linde AG, Kooi SE, Grol CJ, Westerink BH (1996b) Norepinephrine release in the rat pineal gland: the input from the biological clock measured by in vivo microdialysis. J Neurochem 66:748–755

    Article  PubMed  CAS  Google Scholar 

  • Dunlap KL, Reynolds AJ, Tosini G, Kerr WW, Duffy LK (2007) Seasonal and diurnal melatonin production in exercising sled dogs. Comp Biochem Physiol A Mol Integr Physiol 147:863–867

    Article  PubMed  Google Scholar 

  • Duscha BD, Annex BH, Johnson JL, Huffman K, Houmard J, Kraus WE (2012) Exercise dose response in muscle. Int J Sports Med (in press)

  • Elias AN, Wilson AF, Pandian MR, Chune G, Utsumi A, Kayaleh R, Stone SC (1991) Corticotropin releasing hormone and gonadotropin secretion in physically active males after acute exercise. Eur J Appl Physiol Occup Physiol 62:171–174

    Article  PubMed  CAS  Google Scholar 

  • Elias AN, Wilson AF, Pandian MR, Rojas FJ, Kayaleh R, Stone SC, James N (1993) Melatonin and gonadotropin secretion after acute exercise in physically active males. Eur J Appl Physiol Occup Physiol 66:357–361

    Google Scholar 

  • Fernström M, Tonkonogi M, Sahlin K (2004) Effects of acute and chronic endurance exercise on mitochondrial uncoupling in human skeletal muscle. J Physiol 554:755–763

    Article  PubMed  Google Scholar 

  • Fitts RH, Widrick JJ (1996) Muscle mechanics: adaptations with exercise-training. Exerc Sport Sci Rev 24:427–473

    Article  PubMed  CAS  Google Scholar 

  • Garatachea N, García-López D, José Cuevas M, Almar M, Molinero O, Márquez S, González-Gallego J (2011) Biological and psychological monitoring of training status during an entire season in top kayakers. J Sports Med Phys Fitness 51:339–346

    PubMed  CAS  Google Scholar 

  • García-Pallarés J, Izquierdo M (2011) Strategies to optimize concurrent training of strength and aerobic fitness for rowing and canoeing. Sports Med 41:329–343

    Article  PubMed  Google Scholar 

  • García-Pallarés J, Sánchez-Medina L, Carrasco L, Díaz A, Izquierdo M (2009) Endurance and neuromuscular changes in world-class level kayakers during a periodized training cycle. Eur J Appl Physiol 106:629–638

    Article  PubMed  Google Scholar 

  • Garfinkel D, Laudon M, Nof D, Zisapel N (1995) Improvement of sleep quality in elderly people by controlled-release melatonin. Lancet 346:541–544

    Article  PubMed  CAS  Google Scholar 

  • Hamm LL (1990) Renal handling of citrate. Kidney Int 38:728–735

    Article  PubMed  CAS  Google Scholar 

  • Holloszy JO, Booth FW (1976) Biochemical adaptations to endurance exercise in muscle. Annu Rev Physiol 38:273–291

    Article  PubMed  CAS  Google Scholar 

  • Iaia FM, Hellsten Y, Nielsen JJ, Fernström M, Sahlin K, Bangsbo J (2009) Four weeks of speed endurance training reduces energy expenditure during exercise and maintains muscle oxidative capacity despite a reduction in training volume. J Appl Physiol 106:73–80

    Article  PubMed  Google Scholar 

  • Iaia FM, Perez-Gomez J, Nordsborg N, Bangsbo J (2010) Effect of previous exhaustive exercise on metabolism and fatigue development during intense exercise in humans. Scand J Med Sci 20:619–629

    Article  CAS  Google Scholar 

  • Kovács J, Brodner W, Kirchlechner V, Arif T, Waldhauser F (2000) Measurement of urinary melatonin: a useful tool for monitoring serum melatonin after its oral administration. J Clin Endocrinol Metab 85:666–670

    Article  PubMed  Google Scholar 

  • Kvetnansky R, Kopin IJ, Klein DC (1979) Stress increases pineal epinephrine. Commun Psychopharmacol 3:69–72

    PubMed  CAS  Google Scholar 

  • Larsen S, Hey-Mogensen M, Rabøl R, Stride N, Helge JW, Dela F (2012) The influence of age and aerobic fitness: effects on mitochondrial respiration in skeletal muscle. Acta Physiol (Oxf) (in press)

  • Leone RM, Silman RE (1984) Melatonin can be differentially metabolized in the rat to produce N-acetylserotonin in addition to 6-hydroxy-melatonin. Endocrinology 114:1825–1832

    Article  PubMed  CAS  Google Scholar 

  • Little JP, Safdar AS, Wilkin GP, Tarnopolsky MA, Gibala MJ (2010) A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J Physiol 588:1011–1022

    Article  PubMed  CAS  Google Scholar 

  • López BD, Martínez PN, Rodríguez ED, Bas JS, Terrados N (2010) Urine melatonin and citrate excretion during the elite swimmers’ training season. Eur J Appl Physiol 110:549–555

    Google Scholar 

  • Lucía A, Díaz B, Hoyos J, Fernández C, Villa G, Bandrés F, Chicharro JL (2001) Hormone levels of world class cyclists during the Tour of Spain stage race. Br J Sports Med 35:424–430

    Article  PubMed  Google Scholar 

  • Macchi MM, Bruce JN (2004) Human pineal physiology and functional significance of melatonin. Front Neuroendocrinol 25:177–195

    Article  PubMed  CAS  Google Scholar 

  • Marrin K, Drust B, Gregson W, Morris CJ, Chester N, Atkinson G (2011) Diurnal variation in the salivary melatonin responses to exercise: relation to exercise-mediated tachycardia. Eur J Appl Physiol 111:2707–2714

    Article  PubMed  CAS  Google Scholar 

  • Middleton B (2006) Measurement of melatonin and 6-sulphatoxymelatonin. Methods Mol Biol 324:235–254

    PubMed  CAS  Google Scholar 

  • Miyazaki T, Hashimoto S, Masubuchi S, Honma S, Honma KI (2001) Phase-advance shifts of human circadian pacemaker are accelerated by daytime physical exercise. Am J Physiol Regul Integr Comp Physiol 281:197–205

    Google Scholar 

  • Monteleone P, Fuschino A, Nolfe G, Maj M (1992) Temporal relationship between melatonin and cortisol responses to nighttime physical stress in humans. Psychoneuroendocrinology 17:81–86

    Article  PubMed  CAS  Google Scholar 

  • Monteleone P, Maj M, Fusco M, Orazzo C, Kemali D (1990) Physical exercise at night blunts the nocturnal increase of plasma melatonin levels in healthy humans. Life Sci 47:1989–1995

    Article  PubMed  CAS  Google Scholar 

  • Pääkkönen T, Mäkinen TM, Leppäluoto J, Vakkuri O, Rintamäki H, Palinkas LA, Hassi J (2006) Urinary melatonin: a noninvasive method to follow human pineal function as studied in three experimental conditions. J Pineal Res 40:110–115

    Article  PubMed  Google Scholar 

  • Perry CG, Heigenhauser GJ, Bonen A, Spriet LL (2008) High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Appl Physiol Nutr Metab 33:1112–1123

    Article  PubMed  CAS  Google Scholar 

  • Ronkainen H, Vakkuri O, Kauppila A (1986) Effect of physical exercise on the serum concentrations of melatonin in female runners. Acta Obstet Gynecol Scand 65:827–829

    Article  PubMed  CAS  Google Scholar 

  • Ross A, Leveritt M (2001) Long-term metabolic and skeletal muscle adaptations to short-sprint training: implications for sprint training and tapering. Sports Med 31:1063–1082

    Article  PubMed  CAS  Google Scholar 

  • Sahlin K, Katz A, Broberg S (1990) Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Am J Physiol 259:834–841

    Google Scholar 

  • Sharma R, Patnaik SK (1984) Age-related response of citrate synthase to hydrocortisone in the liver and brain of male rats. Experientia 40:97–98

    Article  PubMed  CAS  Google Scholar 

  • Simpson DP (1983) Citrate excretion: a window on renal metabolism. Am J Physiol 244:223–234

    Google Scholar 

  • Skrinar GS, Bulleni BA, Reppert SM, Peachey SE, Turnbull BA, McArthur JW (1989) Melatonin responses to exercise training in women. J Pineal Res 7:184–194

    Article  Google Scholar 

  • Slivka DR, Dumke CL, Hailes WS, Cuddy JS, Ruby BC (2011) Substrate use and biochemical response to a 3,211-km bicycle tour in trained cyclists. Eur J Appl Physiol (in press)

  • Steinlechner S, King TS, Champney TH, Richardson BA, Reiter RJ (1985) Pharmacological studies on the regulation of N-acetyltransferase activity and melatonin content of the pineal gland of the Syrian hamster. J Pineal Res 2:109–119

    Article  PubMed  CAS  Google Scholar 

  • Talanian JL, Galloway SD, Heigenhauser GJ, Bonen A, Spriet LL (2007) Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J Appl Physiol 102:1439–1447

    Article  PubMed  CAS  Google Scholar 

  • Tang JE, Hartman JW, Phillips SM (2006) Increased muscle oxidative potential following resistance training induced fibre hypertrophy in young men. Appl Physiol Nutr Metab 31:495–501

    Article  PubMed  CAS  Google Scholar 

  • Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Hamadeh MJ, Devries MC (2007) Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physiol 292:1271–1278

    Article  Google Scholar 

  • Theintz G, Lang U, Deriaz O, Ceretelli P, Sizonenko P (1984) Steroid. J Biochem 20:1470

    Google Scholar 

  • Theron JJ, Oosthuizen JMC, Rautenbach MM (1984) Effect of physical exercise on plasma melatonin levels in normal volunteers. South Afr Med J 66:838–841

    CAS  Google Scholar 

  • Toftegaard NT (1976) A method for enzymatic determination of citrate in serum andurine. Scand J Clin Lab Invest 36:513–519

    Article  Google Scholar 

  • Urhausen A, Kindermann W (2002) Diagnosis of overtraining: what tools do we have? Sports Med 32:95–102

    Article  PubMed  Google Scholar 

  • Waldhauser F, Boepple PA, Schemper M, Mansfield MJ, Crowley WF Jr (1991) Serum melatonin in central precocious puberty is lower than in age-matched prepubertal children. J Clin Endocrinol Metab 73:793–796

    Article  PubMed  CAS  Google Scholar 

  • Waldhauser F, Weiszenbacher G, Tatzer E, Gisinger B, Waldhauser M, Schemper M, Frisch H (1988) Alterations in nocturnal serum melatonin levels in humans with growth and aging. J Clin Endocrinol Metab 66:648–652

    Article  PubMed  CAS  Google Scholar 

  • Warty VS, Busch RP, Virji MA (1984) A kit for citrate in foodstuffs adapted for assay of serum and urine. Clin Chem 30:1231–1233

    PubMed  CAS  Google Scholar 

  • Weigang G, Remington SJ (1986) Citrate synthase: structure, control and mechanism. Annu Rev Biophysi Biophys Chem 15:97–117

    Article  Google Scholar 

  • Welshman SG, McCambridge H (1973) The estimation of citrate in serum and the urine using a citrate lyase technique. Clin Chim Acta 46:243–246

    Article  PubMed  CAS  Google Scholar 

  • Wells GD, Selvadurai H, Tein I (2009) Bioenergetic provision of energy for muscular activity. Paediatr Respir Rev 10:83–90

    Article  PubMed  Google Scholar 

  • Wurtman RJ (1985) Melatonin as a hormone in humans: a history. Yale J Biol Med 58:547–552

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financed by the Consejo Superior de Deportes (CSD): 08/UPB 10/05, Madrid, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Nuñez.

Additional information

Communicated by Michael Lindinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nuñez, P., Diaz, E., Terrados, N. et al. Urine citrate and 6-sulfatoximelatonin excretion during a training season in top kayakers. Eur J Appl Physiol 112, 4045–4052 (2012). https://doi.org/10.1007/s00421-012-2388-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2388-7

Keywords

Navigation