Skip to main content
Log in

Measurement of human energy expenditure, with particular reference to field studies: an historical perspective

  • Invited Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Over the years, techniques for the study of human movement have ranged in complexity and precision from direct observation of the subject through activity diaries, questionnaires, and recordings of body movement, to the measurement of physiological responses, studies of metabolism and indirect and direct calorimetry. This article reviews developments in each of these domains. Particular reference is made to their impact upon the continuing search for valid field estimates of activity patterns and energy expenditures, as required by the applied physiologist, ergonomist, sports scientist, nutritionist and epidemiologist. Early observers sought to improve productivity in demanding employment. Direct observation and filming of workers were supplemented by monitoring of heart rates, ventilation and oxygen consumption. Such methods still find application in ergonomics and sport, but many investigators are now interested in relationships between habitual physical activity and chronic disease. Even sophisticated questionnaires still do not provide valid information on the absolute energy expenditures associated with good health. Emphasis has thus shifted to use of sophisticated pedometer/accelerometers, sometimes combining their output with GPS and other data. Some modern pedometer/accelerometers perform well in the laboratory, but show substantial systematic errors relative to laboratory reference criteria such as the metabolism of doubly labeled water when assessing the varied activities of daily life. The challenge remains to develop activity monitors that are sufficiently inexpensive for field use, yet meet required accuracy standards. Possibly, measurements of oxygen consumption by portable respirometers may soon satisfy part of this need, although a need for valid longer term monitoring will remain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Web-sites providing photographs of investigators and apparatus are listed in the "Appendix".

References

  • Abel MG, Hannon JC, Sell K et al (2008) Validation of the Kenz Lifecorder EX and ActiGraph GT1M accelerometers for walking and running in adults. Appl Physiol Nutr Metab 33:1155–1164

    Article  PubMed  Google Scholar 

  • Adam CL, Mercer JG (2004) Appetite regulation and seasonality: implications for obesity. Proc Nutr Soc 63:413–419

    Article  PubMed  CAS  Google Scholar 

  • Ainsworth BE, Haskell WL, Leon AS et al (1993a) Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exerc 25:71–80

    Article  PubMed  CAS  Google Scholar 

  • Ainsworth BE, Jacobs DR, Leon AS (1993b) Validity and reliability of self-reported physical activity status: the Lipid Research Clinics questionnaire. Med Sci Sports Exerc 25:92–98

    Article  PubMed  CAS  Google Scholar 

  • Ainsworth BE, Leon AS, Richardson MT et al (1993c) Accuracy of the College Alumnus Physical Activity Questionnaire. J Clin Epidemiol 46:1403–1411

    Article  PubMed  CAS  Google Scholar 

  • Ainsworth BE, Haskell WL, Herrmann S et al (2011) 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc 43:1575–1581

    Article  PubMed  Google Scholar 

  • Albright C, Hultquist CN, Thompson DL (2006) Validation of the lifecorder EX activity monitor. Med Sci Sports Exerc 35(Suppl 5):S500

    Google Scholar 

  • Allen C, O’Hara W (1973) Energy expenditure of infantry patrols during an arctic winter exercise. Defence & Civil Institute of Environmental Medicine, Downsview

    Google Scholar 

  • American College of Sports Medicine (2007) ACSM’s Guidelines for Exercise Testing and Prescription. Lippincott, Williams & Wilkins, Philadelphia

    Google Scholar 

  • Aoyagi Y, McLellan T, Shephard RJ (1997) Interactions of physical training and heat acclimation: the thermophysiology of exercising in a hot climate. Sports Med 23:173–210

    Article  PubMed  CAS  Google Scholar 

  • Armstrong LE, Maresh CM (1999) The induction and decay of heat acclimiatisation in trained athletes. Sports Med 12:302–312

    Article  Google Scholar 

  • Åstrand P-O (1952) Experimental studies of physical working capacity in relation to sex and age. Munksgaard, Copenhagen

    Google Scholar 

  • Åstrand PO, Rodahl K (1986) Textbook of work physiology: physiological bases of exercise, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Åstrand P-O, Ryhming I (1954) A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during submaximal work. J Appl Physiol 7:218–221

    PubMed  Google Scholar 

  • Atallah L, Leong JJ, Lo B et al (2011) Energy expenditure prediction using a miniaturized ear-worn sensor. Med Sci Sports Exerc 43:1369–1377

    Article  PubMed  Google Scholar 

  • Atkinson G, Davison RCR, Nevill AM (2005) Performance characteristics of gas analysis systems: what we know and what we need to know. Int J Sports Med 26(Suppl 1):S2–S10

    Google Scholar 

  • Atwater WO, Rosa EB (1899) Description of a New Respiration Calorimeter and Experiments on the Conservation of Energy in the Human Body. Washington, DC, US Department of Agriculture, Office of Experiment Stations, Government Printing Office, Bulletin 63

  • Baer HJ, Glynn RJ, Hu FB et al (2011) Risk factors for mortality in the nurses’ health study: a competing risks analysis. Am J Epidemiol 173:319–329

    Article  PubMed  Google Scholar 

  • Bailey DA, Shephard RJ, Mirwald RL et al (1974) Current levels of Canadian cardio-respiratory fitness. Can Med Assoc J 111:25–30

    PubMed  CAS  Google Scholar 

  • Baker JA, Humphreys SJE, Wolff HS (1967) Socially acceptable monitoring instruments (SAMI). J Physiol (Lond) 188:4p

    CAS  Google Scholar 

  • Baker JA, Humphrey SGE, Wolff HS (1969) Advances in the technique of using SAMIs (socially acceptable monitoring instruments). J Physiol (Lond) 200:89p

    Google Scholar 

  • Barcroft J (1925–1928) The respiratory function of the blood. Cambridge, UK

  • Barnes RM, Mendel ME (1938) IIHR Bull 12. Studies of Hand Motions and Rhythm Appearing in Factory Work. University of Iowa College of Engineering, Iowa Institute of Hydraulic Research, IOWA, Iowa City

  • Barold S (2005) Norman J (“Jeff”) Holter. “Father” of ambulatory ECG monitoring. J Intervent Cardiac Electrophysiol 14:117–118

    Article  Google Scholar 

  • Barris S, Button C (2008) A review of vision-based motion analysis in sport. Sports Med 38:1025–1043

    Article  PubMed  Google Scholar 

  • Bassett DR, Ainsworth BE, Leggett SR et al (1996) Accuracy of five electronic pedometers for measuring distance walked. Med Sci Sports Exerc 28:1071–1077

    PubMed  Google Scholar 

  • Bassett DR, Cureton QL, Ainsworth BE (2000) Measurement of daily walking distance questionnaire vs. pedometer. Med Sci Sports Exerc 32:1018–1023

    Article  PubMed  Google Scholar 

  • Bassett DR, Howley ET, Thompson DL et al (2001) Validity of inspiratory and expiratory methods of measuring gas exchange with a computerized system. J Appl Physiol 91:218–224

    PubMed  Google Scholar 

  • Bassey EJ, Dalloso HM, Fentem PH et al (1987) Validation of a simple mechanical accelerometer (pedometer) for the estimation of walking activity. Eur J Appl Physiol 56:323–330

    Article  CAS  Google Scholar 

  • Benedict FG, Emmes LE (1915) A calorimetric calibration of the Krogh ergometer. Am J Physiol 38:52–61

    CAS  Google Scholar 

  • Benzinger T, Kitzinger C (1946). Photographische registrierung interferometrischer Gas Analysen (photographic recording interferometric gas analyzers). Heidelberg, Germany, US AAF Aeromedical Center Report

  • Bernstein M, Sloutskis D, Kumanyika Sea (1998) Data-based approach for developing a physical activity frequency questionnaire. Am J Epidemiol 147:147–154

    Article  PubMed  CAS  Google Scholar 

  • Berntsen S, Hageberg R, Aandstad A et al (2010) Validity of physical activity monitors in adults participating in free-living activities. Br J Sports Med 44:657–664

    Article  PubMed  CAS  Google Scholar 

  • Bischoff TLW, von Voit C (1860) Die Gesetze der Ernährung des Fleischfressers durch neue Untersuchungen festgestellt,(The laws of the diet of the carnivore found by new investigations). C.F. Winter, Leipzig

  • Blair SN, Haskell WL, Ho P et al (1985) Assessment of physical activity by a seven-day recall in a community survey and controlled experiments. Am J Epidemiol 122:794–804

    PubMed  CAS  Google Scholar 

  • Blair SN, Kohl HW, Paffenbarger RS et al (1989) Physical fitness and all-cause mortality: a prospective study of healthy men and women. JAMA 262:2395–2401

    Article  PubMed  CAS  Google Scholar 

  • Blair SN, Kohl HW, Barlow CE et al (1995) Changes in physical fitness and all-cause mortality: a prospective study of healthy and unhealthy men. JAMA 273:1093–1098

    Article  PubMed  CAS  Google Scholar 

  • Blair SN, Cheng Y, Holder JS (2001) Is physical activity or physical fitness more important in defining health benefits? Med Sci Sports Exerc 33(Suppl. 2):S379–S399

    PubMed  CAS  Google Scholar 

  • Blessinger J, Sawyer B, Davis C et al (2009) Reliability of the VmaxST portable metabolic measurement system. Int J Sports Med 30:22–26

    Article  PubMed  CAS  Google Scholar 

  • Bonomi AG, Plasqui G, Goris AH et al (2010) Estimation of free-living energy expenditure using a novel activity monitor designed to minimize obtrusiveness. Obesity 18:1845–1851

    Article  PubMed  Google Scholar 

  • Boon RM, Hamlin MJ, Steel GD et al (2010) Validation of the New Zealand Physical Activity Questionnaire (NZPAQ-LF) and the International Physical Activity Questionnaire (IPAQ-LF) with accelerometry. Br J Sports Med 44:741–746

    Article  PubMed  CAS  Google Scholar 

  • Booyens J, Hervey GR (1960) The pulse rate as a means of measuring metabolic rate in man. Can J Biochem 38:1301–1308

    Article  Google Scholar 

  • Bouchard C (2001) Physical activity and health. Introduction to the dose response symposium. Med Sci Sports Exerc 33(Suppl. 6):S347–S350

    PubMed  CAS  Google Scholar 

  • Bouchard C, Shephard RJ, Stephens T (1994) Physical activity, fitness and health. Human Kinetics, Champaign

    Google Scholar 

  • Branth S, Hambraeus L, Westerterp K et al (1996) Energy turnover during offshore sailing racing as studied by food inventories, doubly labeled water and anthropometry. Med Sci Sports Exerc 28:1272–1276

    PubMed  CAS  Google Scholar 

  • Brehm MA, Harlaar J, Groepenhof H (2004) Validation of the portable VmaxST system for oxygen intake measurement. Gait Posture 20:67–73

    Article  PubMed  Google Scholar 

  • Brownson RC, Jones DA, Pratt M et al (2000) Measuring physical activity with the behavioral risk factor surveillance system. Med Sci Sports Exerc 32:1913–1918

    Article  PubMed  CAS  Google Scholar 

  • Brox WT, Ackles KN (1973) SDL-1 Physiological diver monitoring system. Porgress Report.1. DCIEM Operational Report 73-OR-989, Downsview

  • Brychta RJ, Rothney MP, Skarulis MC et al (2009) Optimizing energy expenditure detection in human metabolic chambers. Conf Proc IEEE Eng Med Biol Soc 2009:6864–6868

    PubMed  Google Scholar 

  • Burke E (1998) Precision heart rate training. Human Kinetics, Champaign

    Google Scholar 

  • Buskirk ER, Thompson RH, Moore R et al (1960) Human energy expenditure studies in the national institute of arthritis and metabolic diseases metabolic chamber. Am J Clin Nutr 8:602–613

    CAS  Google Scholar 

  • Buskirk ER, Harris D, Mendez J et al (1971) Comparison of two assessments of physical activity and a survey method for calorimetric intake. Am J Clin Nutr 24:1119–1125

    PubMed  CAS  Google Scholar 

  • Busse ME, van Deursen RW, Wiles CM (2009) Real-life step and activity measurement: reliability and validity. J Med Eng Technol 33:33–41

    Article  PubMed  CAS  Google Scholar 

  • Cathcart EP, Cuthbertson DP (1931) The composition and distribution of the fatty substances of the human subject. J Physiol (Lond) 72:349–360

    CAS  Google Scholar 

  • Cathcart EP, Richardson DT, Campbell W (1923) On the maximal load to be carried by the soldier. JR Army Corps 41:12–24

    Google Scholar 

  • Christensen EH, Högberg P (1950) The efficiency of anaerobical work. Arbeitsphysiol 14:249–250

    Google Scholar 

  • Clark GE (1954) A chrtonocyclograph that will help you improve methods. Factory 112:124–125

    Google Scholar 

  • Clark LC, Wolf R, Granger D et al (1953) Continuous recording of blood oxygen tensions by polarography. J Appl Physiol 6:189–193

    PubMed  CAS  Google Scholar 

  • Consolazio CF (1971) Energy expenditure studies in military populations using Kofranyi-Michaelis respirometers. Am J Clin Nutr 24:1431–1437

    PubMed  CAS  Google Scholar 

  • Corder K, Brage S, Mattocks C et al (2007) Comparison of two methods to assess PAEE during six activities in children. Med Sci Sports Exerc 39:2180–2188

    Article  PubMed  Google Scholar 

  • Cotes JE, Woolmer RF (1962) A comparison between twenty seven laboratories of the results of analysis of an expired gas sample. J Physiol (Lond) 163:36p–37p

    Google Scholar 

  • Crawford MH (1999) ACC/AHA guidelines for ambulatory electrocardiography: executive summary and recommendations. A report of the American college of cardiology/American heart association task force on practice guidelines (Committee to Revise the Guidelines for Ambulatory Electrocardiography) Developed in Collaboration With the North American Society for Pacing and Electrophysiology. Circulation 100:886–893

    Google Scholar 

  • Crouter SE, Schneider PL, Karabulut M et al (2003) Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Med Sci Sports Exerc 35:1455–1460

    Article  PubMed  Google Scholar 

  • Crouter SE, Antczak A, Hudak JR et al (2006) Accuracy and reliability of the ParvoMedics TrueOne 2400 and Medgraphics VO2000 metabolic systems. Eur J Appl Physiol 98:139–151

    Article  PubMed  Google Scholar 

  • Crouter SE, Churilla JR, Bassett DR (2008) Accuracy of the Actiheart for the assessment of energy expenditure in adults. Eur J Clin Nutr 62:704–711

    Article  PubMed  CAS  Google Scholar 

  • Cyarto EV, Myers AM, Tudor-Locke C (2004) Pedometer accuracy in nursing home and community dwelling older adults. Med Sci Sports Exerc 36:205–209

    Article  PubMed  Google Scholar 

  • Dan AJ, Wilbur JE, Hedricks C et al (1990) Lifelong physical activity and older women. Psychol Women Quart 14:531–542

    Article  Google Scholar 

  • Davies CTM, Sergeant AJ (1975) Circadian variation in physiological responses to exercise on a stationary bicycle ergometer. Br J Ind Med 32:110–114

    PubMed  CAS  Google Scholar 

  • Davies CTM, Brotherhood JR, Zeidifard E (1976) Temperature regulation during severe exercise with some observations on effects of skin wetting. J Appl Physiol 41:772–776

    PubMed  CAS  Google Scholar 

  • Daynes H, Shakespear G (1920) The theory of the katharometer. Proc R Soc Lond 97:273–286

    Article  CAS  Google Scholar 

  • Dijkstra B, Kamsma Y, Ziljstra W (2010) Detection of gait and postures using a miniaturized triaxial accelerometer-based system: accuracy in community dwelling older adults. Age Ageing 39:259–262

    Article  PubMed  Google Scholar 

  • Dorminy CA, Choi L, Akohue SL et al (2008) Validity of a multisensor armband in children. Med Sci Sports Exerc 40:699–706

    Article  PubMed  Google Scholar 

  • Douglas CG (1911) A method for determining the total respiratory exchange in man. J Physiol (Lond) 42:1p–2p

    Google Scholar 

  • Douglas CG (1956) The development of experimental methods for determining the energy of man. Proc Nutr Soc 15:72–77

    Article  PubMed  CAS  Google Scholar 

  • Drust B, Atkinson G, Reilly T (2007) Future perspectives in the evaluation of the physiological demands of soccer. Sports Med 37:783–805

    Article  PubMed  Google Scholar 

  • Du Bois EF (1939) Biographical memoir of Graham Lusk (1866–1932). Nat Acad Sci USA, Washington, DC

    Google Scholar 

  • Dubois AB, Fowler RC, Soffer A et al (1952) Alveolar CO2 measured by expiration into the rapid infrared gas analyzer. J Appl Physiol 4:526–534

    PubMed  CAS  Google Scholar 

  • Duncan MJ, Badlam HM, Mummery WK (2009) Applying GPS to enhance understanding of transport-related physical activity. J Sci Med Sport 12:549–556

    Article  PubMed  Google Scholar 

  • Duncan GE, Lester J, Migotsky S et al (2011) Accuracy of a novel multi-sensor board for measuring physical activity and energy expenditure. Eur J Appl Physiol 111:2025–2032

    Article  PubMed  Google Scholar 

  • Durnin JVGA, Edwards RG (1955) Pulmonary ventilation as an index of energy expenditure. Quart J Exp Physiol 40:370–377

    PubMed  CAS  Google Scholar 

  • Durnin JVGA, Passmore R (1967) Energy, work and leisure. Heinemann, London, UK

    Google Scholar 

  • Ebine N, Rafamantavantosa HH, Nayuki Y et al (2002) Measurement of total energy expenditure by the doubly labelled water method in soccer players. J Sports Sci 20:391–397

    Article  PubMed  Google Scholar 

  • Edgecomb S, Norton K (2006) Comparison of global positioning and computer-based tracking systems for measuring player movement distance during Australian football. J Sci Med Sport 9:25–32

    Article  PubMed  CAS  Google Scholar 

  • Edholm OG (1966) The assessment of habitual activity. Physical activity in health and disease. In: Evang K, Andersen KL (eds) Williams & Wilkins. Baltimore, MD

    Google Scholar 

  • Edholm OG, Adam JM, Healy MJR et al (1970) Food intake and energy expenditure of army recruits. Br J Nutr 24:1091–1107

    Article  PubMed  CAS  Google Scholar 

  • Edholm OG, Humphrey SGE, Lourie JA et al (1973) VI. Energy expenditure and climatic exposure of Yemenite and Kurdish Jews in Israel. Philosoph Trans R Soc Lond B 266:127–140

    Article  CAS  Google Scholar 

  • Edwards AM, Clark NA (2006) Thermoregulatory observations in soccer-match play: professional and recreational level applications using an intestinal pill system to measure core temperature. Br J Sports Med 40:133–138

    Article  PubMed  CAS  Google Scholar 

  • Eisenmann JC, Brisko N, Shadrick D et al (2003) Comparative analysis of Cosmed Quark b2 and K4b2 gas analysis systems during submaximal exercise. J Sports Med Phys Fit 43:150–155

    CAS  Google Scholar 

  • Eriksen L, Dahl-Petersen I, Haugaard SB et al (2007) Comparison of the effect of multiple short-duration with long-duration exercise sessions on glucose homeostasis in type 2 diabetes mellitus. Diabetologia 50:2245–2253

    Article  PubMed  CAS  Google Scholar 

  • Ewalt LA, Swartz AM, Strath SJ et al (2008) Validity of physical activity monitors in assessing energy expenditure in normal, overweight, and obese adults. Med Sci Sports Exerc 40(Suppl. 5):S198

    Google Scholar 

  • Fine LJ, Philogene GS, Gramling R et al (2004) Prevalence of multiple chronic disease risk factors: 2001 national health interview survey. Am J Prev Med 27(Suppl 2):18–24

    Article  PubMed  Google Scholar 

  • Fitness and Amateur Fitness Sport Canada (1983) Fitness & Lifestyle in Canada: The Canada Fitness Survey. Fitness & Amateur Sport. Government of Canada, Ottawa

    Google Scholar 

  • Fleisch A (1952) Metabographie; appareils pour l’enregistrement de la consommation d’oxygène, la production de dioxyde de carbone, le quotient respiratoire et de la dette d’oxygène. Metabograpy; apparatus for direct regstration of oxygen consumption, carbon dioxide production, respiratory quotient, and of oxygen debt. J Physiol (Paris) 44:615–616

    CAS  Google Scholar 

  • Fleisch A (1954) Nouvelles méthodes d’études des échanges gazeux et de la fonction pulmonaire (New methods of studying gaseous exchange and pulmonary function). Benno Schwabe & Co, Basel

    Google Scholar 

  • Ford AB, Hellerstein HK (1959) Estimation of energy expenditure from pulmonary ventilation. J Appl Physiol 14:891–893

    PubMed  CAS  Google Scholar 

  • Fowler RC (1949) A rapid infra-red gas analyzer. Rev Sci Instr 20:175–178

    Article  CAS  Google Scholar 

  • Frencken WG, Lemmink KA, Delleman NJ (2010) Soccer-specific accuracy and validity of the local position measurement (LPM) system. J Sci Med Sport 13(6):641–645

    Google Scholar 

  • Friedenreich CM, Corneya KS, Bryant HE (1998) The lifetime total physical activity questionnaire: development and reliability. Med Sci Sports Exerc 30:266–274

    PubMed  CAS  Google Scholar 

  • Fruin ML, Rankin JW (2004) Validity of a multisensor armband in estimating rest and exercise energy expenditure. Med Sci Sports Exerc 36:1063–1069

    Article  PubMed  Google Scholar 

  • Ganio MS, Brown CM, Casa DJ et al (2009) Validity and reliability of devices that assess body temperature during indoor exercise in the heat. J Athl Train 44:124–135

    Article  PubMed  Google Scholar 

  • Gastinger S, Sfati H, Nicoas G et al (2011) A new method to estimate energy expenditure from abdominal, and rib cage distances. Eur J Appl Physiol 111:2823–2825

    Article  PubMed  CAS  Google Scholar 

  • Gawloska J, Wranicz JK (2009) Norman J (“Jeff”) Holter. Cardiol J 16(4):1–2

    Google Scholar 

  • Gedeon A (2006) Science and technology in medicine: an illustrated account based on ninety-nine landmark publications from five centuries. Springer, New York

    Google Scholar 

  • Geppert J, Zuntz N (1888) Ueber die Rgeulation der Athmung (On the regulation of breathing). Pflüg Archiv Physiol 42:189–245

  • Gesell R, McGinty DA (1926) Regulation of respiration VI: continuous electrometric methods of recording changes in expired carbon dioxide and oxygen. Am J Physiol 79:72–90

    CAS  Google Scholar 

  • Gilbreth FB, Carey EG (1948) Cheaper by the dozen. Harper-Collins, New York

    Google Scholar 

  • Gilbreth FB, Gilbreth LM (1920) Motion study for the handicapped. Routledge, London

    Google Scholar 

  • Glagov S, Rowley DA, Cramer DB et al (1970) Heart rates during 24 hours of usual activity for 100 normal men. J Appl Physiol 29:799–805

    PubMed  CAS  Google Scholar 

  • Godin G, Shephard RJ. (1973) Activity patterns of the Canadian Eskimo. Polar Human Biology. In: Edholm OG, Gunderson EKE (eds) Heinemann medical books, London, pp 193–215

  • Godin G, Shephard RJ (1985) A simple method to assess exercise behaviour in the community. Can J Appl Sport Sci 10:141–146

    PubMed  CAS  Google Scholar 

  • Goldsmith R, Miller DS, Mumford P et al (1967) The use of long-term measurements of heart rate to assess energy expenditure. J Physiol (Lond) 189:35P–36P

    Google Scholar 

  • Goode RC, Mertens R, Shaiman Sea (1998) Voice, breathing and the control of exercise intensity. Adv Exp Med Biol 450:223–229

    PubMed  CAS  Google Scholar 

  • Groover M (2007) Work systems and methods, measurement and management of work. Pearson Education International, Harlow

    Google Scholar 

  • Grossman P (2004) The LifeShirt: a multifunction ambulatory system monitoring health, disease and medical intervention in the real world. Stud Health Technol Inform 108:133–141

    PubMed  Google Scholar 

  • Haldane JS (1918) Methods of air analysis. Charles Griffin, London

    Google Scholar 

  • Haldane JS, Priestley JG (1935) Respiration. Oxford University Press, Oxford

    Google Scholar 

  • Hardman AE (2001) Issues of fractionalization of exercise (short vs. long bouts). Med Sci Sports Exerc 33(Suppl 6):S421–S428

    PubMed  CAS  Google Scholar 

  • Haskell WL, Taylor HL, Wood PD et al (1980) Strenuous physical activity, treadmill performance and plasma high-density lipoprotein cholesterol. The Lipid Research Clinics Program Prevalence Study. Circulation 62:53–61

    CAS  Google Scholar 

  • Haskell WL, Yee MC, Evans A et al (1993) Simultaneous measurement of heart rate and body motion to quantitate physical activity. Med Sci Sports Exerc 25:109–115

    Article  PubMed  CAS  Google Scholar 

  • Hausswirth C, Bigard AX, LeChevalier JM (1997) The Cosmed K4 telemetry system as an accurate device for oxygen uptake measurements during exercise. Int J Sports Med 18:449–453

    Article  PubMed  CAS  Google Scholar 

  • Health Canada (2010). Canadian nutrient files. Ottawa, ON, Health Canada. http://webprod3.hc-sc.gc.ca/cnf-fce/index-eng.jsp

  • Heywood PF, Rur B, Latham MC (1971) Use of the SAMI heart rate integrator in malnourished children. Am J Clin Nutr 24:1446–1451

    PubMed  CAS  Google Scholar 

  • Hodges RE (1971) The role of a metabolic ward in nutritional studies. Am J Clin Nutr 24:930–933

    PubMed  CAS  Google Scholar 

  • Hodges LD, Brtodie DA, Bromley PD (2005) Validity and reliability of selected commercially available metabolic analyzer systems. Scand J Med Sci Sports 15:271–279

    Article  PubMed  CAS  Google Scholar 

  • Holter NJ (1961) New method for heart studies. Science 134:1214–1220

    Article  PubMed  CAS  Google Scholar 

  • Holter NJ, Generelli JA (1949) Remote recording of physiological data by radio. Rocky Mountain Med J 46:747–751

    PubMed  CAS  Google Scholar 

  • Hoos MB, Plasqui G, Gerver GW et al (2003) Physical activity level measured by doubly labeled water and accelerometry in children. Eur J Appl Physiol 89:624–626

    Article  PubMed  Google Scholar 

  • Hoppe-Seyler F (1894) Apparat zur Messung der Respiratorischen Aufnahme und Abgaben von Gasen am Menschen nach dem Principe von Regnault (Apparatus for measuring the uptake and output of gases in men using the von Regnault method). Z Physiol Chim 15:574–589

    Google Scholar 

  • Horvath SM, Horvath EC (1973) The Harvard Fatigue Laboratory: its history and contributions. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Humphrey SGE, Wolff HS (1968) A temperature SAMI. J Physiol (Lond) 194:5p–6p

    CAS  Google Scholar 

  • Humphrey SGE, Wolff HS (1977) The oxylog. J Physiol (Lond) 267:12p

    CAS  Google Scholar 

  • Hunter JA, Stacy RW, Hitchcock FA (1949) A mass spectrometer for continuous gas analysis. Rev Sci Instrum 20(5):333–336

    Google Scholar 

  • Hutchinson J (1846) On the capacity of the lungs and on the respiratory functions, with a view of establishing a precise and easy method of detecting disease by the spirometer. Trans R Med Chir Soc Lond 29:137–252

    CAS  Google Scholar 

  • Jackson RC, Secher NH (1976) The aerobic demands of rowing in two Olympic rowers. Med Sci Sports 8:168–170

    Article  PubMed  CAS  Google Scholar 

  • Jacobs DR, Ainsworth BE, Hartman D et al (1993) A simultaneous evaluation of 10 commonly used physical activity questionnaires. Med Sci Sports Exerc 25:81–91

    Article  PubMed  Google Scholar 

  • Jakicic JM, Marcus M, Gallagher KI et al (2004) Evaluation of the Sense-Wear Pro Armband to assess energy expenditure during exercise. Med Sci Sports Exerc 36:897–904

    Article  PubMed  Google Scholar 

  • JAMA Editor (1965) Max Rubner [1854–1932] Energy physiologist. JAMA 194 (1):198–199

  • Johnson RE, Robbins F, Schilke R et al (1967) A versatile system for measuring oxygen consumption in man. J Appl Physiol 22:377–379

    PubMed  CAS  Google Scholar 

  • Joule JP (1845) On the mechanical equivalent of heat. Brit. Assoc. Rep., Trans. Chemical Sect p 31. (read before the British Association at Cambridge, June 1845)

  • Kannel WB (1967) Habitual level of physical activity and risk of coronary heart disease. The Framingham Study. Can Med Assoc J 96:811–812

    PubMed  CAS  Google Scholar 

  • Karvonen J, Chwalbinska-Moneta J, Säynäjäkangas S (1984) Comparison of heart rates measured by ECG and Microcomputer. Phys Sportsmed 12(6):65–69

    Google Scholar 

  • Katzmarzyk P, Tremblay MS (2007) Limitations of Canada’s physical activity data: implications for monitoring trends. Appl Physiol Nutr Metab 32(Suppl. 2E):S185–S194

    Article  Google Scholar 

  • Kavanagh T (1976) Heart attack? Counter attack! Van Nostrand, Toronto, ON

  • Kemper HCG, Verschuur R (1977) Validity and reliability of pedometers in research on habitual physical activity. Frontiers of activity and child health. In: Shephard RJ, Lavallée H (eds) Editions du Pélican, Québec, QC, pp 83–92

  • Kesaniemi YK, Danforth E, Jensen PJ et al (2001) Dose-response issues concerning physical activity and health: an evidence-based symposium. Med Sci Sports Exerc 33:S351–S358

    Article  PubMed  CAS  Google Scholar 

  • Khoór S, Nieberl J, Fügedi K et al (2001) Telemedicine ECG-telemetry with bluetooth technology. Comput Cardiol 28:585–588

    Google Scholar 

  • King GA, McLaughlin JE, Howley ET et al (1999) Validation of Aerosport KB1-C portable metabolic system. Int J Sports Med 20:304–308

    Article  PubMed  CAS  Google Scholar 

  • King GA, Torres N, Potter C et al (2004) Comparison of activity monitors to estimate energy cost of treadmill exercise. Med Sci Sports Exerc 36:1244–1251

    Article  PubMed  Google Scholar 

  • Klesges RC, Eck LH, Mellon MW et al (1990) The accuracy of self-reports of physical activity. Med Sci Sports Exerc 22:690–697

    Article  PubMed  CAS  Google Scholar 

  • Knapik J, Reynolds K (1997) Load carriage in military operations. A review of historical, physiological, biomechanical and medical aspects. Borden Institute, Walter Reed Army Medical Center, Washington, DC

    Google Scholar 

  • Koehler K, Braun H, de Marées M et al (2011) Assessing energy expenditure in male endurance athletes: validity of the SenseWear Armband. Med Sci Sports Exerc 43:1328–1333

    Article  PubMed  Google Scholar 

  • Kofranyi E, Michaelis HF (1941) Ein Tragbarer Apparat zur Bestimmung des Gasstoffwechsels (A portable apparatus for the measurement of gas exchange). Arbeitsphysiology 11:148–150

    Google Scholar 

  • Krenn PJ, Mag DI, Titze S et al (2011) Use of global positioning systems to study physical activity and the environment. Am J Prev Med 41:508–515

    Article  PubMed  Google Scholar 

  • Kriska AM, Black-Sandler R, Cauley JA et al (1988) The assessment of historical physical activity and its relation to adult bone parameters. Am J Epidemiol 127:1053–1063

    PubMed  CAS  Google Scholar 

  • Krogh A (1916) The respiratory exchange of animals and man. Longmans, Green, London

    Google Scholar 

  • Krogh A, Lindhard J (1920) The relative value of fat and carbohydrate as sources of muscular energy. Biochem J 14:290–363

    PubMed  CAS  Google Scholar 

  • Kumahara H, Schutz Y, Makoto A et al (2004) The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry. Br J Nutr 91:235–243

    Article  PubMed  CAS  Google Scholar 

  • Lamb KL, Brodie DA (1990) The assessment of physical activity by leisure-time physical activity questionnaires. Sports Med 10:159–180

    Article  PubMed  CAS  Google Scholar 

  • Lamonte MJ, Ainsworth BE (2001) Quantifying energy expenditures and physical activity in the context of dose response. Med Sci Sports Exerc 33(Suppl 6):S370–S380

    PubMed  CAS  Google Scholar 

  • Larsson P (2003) Global positioning system and sports-specific testing. Sports Med 33:1093–1110

    Article  PubMed  Google Scholar 

  • Larsson PU, Wadell KME, Jakobsson EJI et al (2004) Validation of the MetaMax II portable metabolic measurement system. Int J Sports Med 25:115–123

    Article  PubMed  CAS  Google Scholar 

  • Lavoisier A (1790) Traité élementaire de chimie (Elements of chemistry). Transl. R Kerr. William Creech, Edinburgh

    Google Scholar 

  • Lavoisier A, LaPlace S-P (1780) Mémoire sur lar chaleur (treatise on heat). Mém Acad Sci Paris 355

  • Le Masurier GC, Tudor-Locke C (2003) Comparison of pedometer and accelerometer accuracy under controlled conditions. Med Sci Sports Exerc 35:867–871

    Article  PubMed  Google Scholar 

  • Leenders JM, Nicole Y, Shermant M et al (2001) Evaluation of methods to assess physical activity in free-living conditions. Med Sci Sports Exerc 33:1233–1240

    PubMed  CAS  Google Scholar 

  • Lemon PW, Hermiston RT (1977) The human energy cost of firefighting. J Occup Med 19:558–562

    PubMed  CAS  Google Scholar 

  • Lifson N, Gordon GB, McClintock R (1955) Measurement of total carbon dioxide production by means of D2 18O. J Appl Physiol 7:704–710

    PubMed  CAS  Google Scholar 

  • Lind J (1753) A treatise on the scurvy. Sands, Murray & Cochran, Edinburgh

    Google Scholar 

  • Lindhard J (1934) The theory of gymnastics. Methuen, London

    Google Scholar 

  • Littlewood RA, White MS, Bell KL et al (2002) Comparison of the Cosmed K4 b2 and the Deltatrac II™ metabolic cart in measuring resting energy expenditure in adults. Clin Nutr 21:491–497

    Article  PubMed  CAS  Google Scholar 

  • Lloyd BB (1958) Development of Haldane’s gas analysis apparatus. J Physiol (Lond) 143:5P–6P

    Google Scholar 

  • Logic JL, Maksud MG, Hamilton LH (1967) Factors affecting transthoracic impedance signals used to measure breathing. J Appl Physiol 22:251–254

    PubMed  CAS  Google Scholar 

  • Lothian F, Farrally MR, Mahoney C (1993) Validity and reliability of the Cosmed K2 to measure oxygen uptake. Can J Appl Physiol 18:197–206

    Article  PubMed  CAS  Google Scholar 

  • Louhevaara V, Ilmarinen J, Oja P (1985) Comparison of three field methods for measuring oxygen consumption. Ergonomics 28:463–470

    Article  PubMed  CAS  Google Scholar 

  • Lucia A, Fleck SJ, Gotshall KW et al (1993) Validity and reliability of the Cosmed K2 instrument. Int J Sports Med 14:380–386

    Article  PubMed  CAS  Google Scholar 

  • Lusk G (1932) Contributions to the science of nutrition, a tribute to the life and work of Max Rubner. Science 76:129–135

    Article  PubMed  CAS  Google Scholar 

  • MacCurdy E (1938) The notebooks of Leonardo da Vinci. Reynal & Hitchcock, New York

    Google Scholar 

  • Macfarlane DJ (2001) Automated metabolic gas analysis systems. Sports Med 31:841–861

    Article  PubMed  CAS  Google Scholar 

  • Maddison R, Ni Mhurchu C (2009) Global positioning system: a new opportunity in physical activity measurement. Int J Behav Nutr Phys Act 6(1):73

    Article  PubMed  Google Scholar 

  • Maddison R, Jiang Y, Vander Hoorn S et al (2010) Describing patterns of physical activity in adolescents using global positioning systems and accelerometry. Pediatr Exerc Sci 22:397–407

    Google Scholar 

  • Magnus K, Matroos A, Strackee J (1979) Walking, cycling, or gardening, with or without seasonal interruption, in relation to acute coronary events. Am J Epidemiol 110:724–733

    PubMed  CAS  Google Scholar 

  • Magnus-Levy A (1893) Über die Grösse des respiratorischen Gaswechsels unter dem Einfluss der Nahrungsaufnahme (On the size of the respiratory gas exchange as affected by food intake). Pflüg Archiv ges Physiol 55:1–126

    Article  Google Scholar 

  • Maiolo C, Melchiorri G, Iacopino L et al (2003) Physical activity energy expenditure measured using a portable telemetric device in comparison with a mass spectrometer. Br J Sports Med 37:445–447

    Article  PubMed  CAS  Google Scholar 

  • Malavolti M, Pietrobelli A, Dugoni M et al (2007) A new device for measuring resting energy expenditure (REE) in healthy subjects. Nutr Metab Cardiovasc Dis 17:338–343

    Article  PubMed  Google Scholar 

  • Masironi R, Mansourian P (1974) Determination of habitual physical activity by means of a portable R–R interval distribution recorder. Bull WHO 51:291–298

    PubMed  CAS  Google Scholar 

  • McClain JJ, Sisson BB, Tudor-Locke C (2007) Actigraph accelerometer inter-instrument reliability during free-living in adults. Med Sci Sports Exerc 39:1509–1514

    Article  PubMed  Google Scholar 

  • McLaughlin JE, King GA, Howley ET et al (2001) Validation of the COSMED K4 b2 portable metabolic system. Int J Sports Med 22:280–284

    Article  PubMed  CAS  Google Scholar 

  • Means JH (1958) Ward 4, The Mallinckdrodt Research ward of the Massachusetts General Hospital. Harvard University Press, Cambridge

    Google Scholar 

  • Meijer GAL, Westerterp KR, Verhoeven FMH et al (1991) Methods to assess physical activity with special reference to motion sensors and accelerometers. IEEE Trans Biomed Eng 38:221–228

    Article  PubMed  CAS  Google Scholar 

  • Meyer T, Georg T, Becker C et al (2001) Reliability of gas exchange measurements from two different spiroergometry systems. Int J Sports Med 22:593–597

    Article  PubMed  CAS  Google Scholar 

  • Mizuno C, Yoshida T, Udo M (1990) Estimation of energy expenditure during walking and jogging by using an electro-pedometer. Ann Physiol Anthropol 9:283–289

    Article  PubMed  CAS  Google Scholar 

  • Monod H (1967) La validité des mesures de la fréquence cardiaque en ergonomie (The validity of heart rate measurements in ergonomics). Ergonomics 10:485–537

    Article  PubMed  CAS  Google Scholar 

  • Montoye HJ (1971) Estimation of habitual activity by questionnaire and interview. Am J Clin Nutr 24:1113–1118

    PubMed  CAS  Google Scholar 

  • Montoye HJ, Kemper HCG, Saris WH et al (1996) Measuring human energy expenditure. Human Kinetics, Champaign

    Google Scholar 

  • Morris JN, Chave SP, Adam C et al (1973) Vigorous exercise in leisure time and the incidence of coronary heart disease. Lancet (1):333–339

  • Morris JN, Clayton DG, Everitt MG et al (1990) Exercise in leisure time. Coronary attack and death rates. Br Heart J 63:325–334

    Article  PubMed  CAS  Google Scholar 

  • Moti RW, McAuley EA, Stefano C (2005) Is social desirability associated with self-reported physical activity? Prev Med 40:735–739

    Article  Google Scholar 

  • Müller EA (1952) Ein Leistungs-pulsindex als Maß der Leistungsfähigkeit (a power-pulse index as a measure of performance). Arbeitsphysiol 14:271–284

    Google Scholar 

  • Müller EA, Franz H (1952) Energieverbrauchmessungen bei beruflicher Arbeit mit einer verbesserten Respirations-Gasuhr (Measurement of energy consumption during occupational activities with an improved respiratory gas meter). Arbeitsphysiol 14:499–504

    Google Scholar 

  • Müller EA, Himmelmann W (1957) Gerate zur continuierlichen fotoelektrischen Pulszahlung (Equipment for continuous photoelectric pulse counting). Int Z angew Physiol 16:400–408

    PubMed  Google Scholar 

  • Mundal R, Eriksson J, Rodahl K (1987) Assessment of physical activity by questionnaire and by personal interview with particular reference to fitness and coronary mortality. Eur J Appl Physiol 54:245–252

    Article  Google Scholar 

  • Mundel ME (1958) Memomotion. Time Motion Study 7:32–43

    Google Scholar 

  • Murphy MH, Blair SN, Murtagh EM (2009) Accumulated versus continuous exercise for health benefit: a review of empirical studies. Sports Med 39:29–43

    Article  PubMed  Google Scholar 

  • National Health and Nutrition Examination Survey (2011) Questionnaires, data sets and related diocumentation. Atlanta, GA, Centers for Disease Control & Prevention. September 18, 2011

  • Neumann P, Zinserling J, Haase C et al (1998) Evaluation of respiratory inductive plethysmography in controlled ventilation: measurement of tidal volume and PEEP changes of end-expiratory lung volume. Chest 113:443–451

    Article  PubMed  CAS  Google Scholar 

  • Nichols B (1994) Atwater and USDA nutrition research and service. A prologue of the past century. J Nutr 124 (Suppl):1718S–1727S

    Google Scholar 

  • Nielsen M (1938) Die regulation der Körpertemperatur bei Muskelarbeit (The regulation of body temperature during muscular work). Skand Arkiv Physiol 79:193–230

  • Nielsen B (1969) Thermoregulation in rest and exercise. Acta Physiol Scand Suppl 323:1–74

    Article  PubMed  CAS  Google Scholar 

  • Novitsky S, Segal KR, Chatr-Aryamontri et al (1995) Validity of a new portable indirect calorimeter: the Aerospeort bTeem 100. Eur J Appl Physiol 70:462–467

    Article  CAS  Google Scholar 

  • Ontario Fitness (1983) Physical activity patterns in Ontario Part II. Fitness Ontario, Toronto

    Google Scholar 

  • Orsini D, Passmore R (1951) Energy expended carrying loads up and down stairs: experiments using the Kofranyi-Michaelis respirometer. J Physiol (Lond) 115:95–100

    CAS  Google Scholar 

  • Paffenbarger RS, Lee I-M (1995) Physical activity and fitness for health and longevity. Res Quart 67(suppl 3):S11–S28

    Google Scholar 

  • Paffenbarger RS, Wing AL, Hyde RT (1978) Physical activity as an index of heart attack risk in college alumni. Am J Epidemiol 108:161–175

    PubMed  Google Scholar 

  • Paffenbarger RS, Blair SN, Lee I-M (2001) A history of physical activity, cardiovascular health and longevity: the scientific contributions of Jeremy N Morris, DPH, FRCP. Int J Epidemiol 30:1184–1192

    Article  PubMed  Google Scholar 

  • Pandolf KB, Haisman MF, Goldman RF (1976) Metabolic expenditure and terrain coefficients for walking on snow. Ergonomics 19:683–690

    Article  PubMed  CAS  Google Scholar 

  • Park J, Ishikawa-Takata K, Tanaka S et al (2011) Effects of walking speed and step frequency on estimation of physical activity using accelerometers. J Physiol Anthropol 30:119–127

    Article  PubMed  Google Scholar 

  • Passmore R, Durnin JVGA (1955) Human energy expenditure. Physiol Rev 35:801–840

    PubMed  CAS  Google Scholar 

  • Pauling L, Wood RE, Sturdivant JH (1946) An instrument for determining the partial pressure of oxygen in a gas. J Am Chem Soc 68:795–809

    Google Scholar 

  • Peronnet F, Massicotte D (1991) Table of non-protein respiratory quotients; an update. Can J Sport Sci 16:23–29

    PubMed  CAS  Google Scholar 

  • Perret C, Mueller G (2006) Validation of a new portable ergospirometric device (Oxycon Mobile®) during exercise. Int J Sports Med 27:363–367

    Article  PubMed  CAS  Google Scholar 

  • Perroni F, Tessitore A, Cortis C et al (2010) Energy costs and energy sources during a simulated firefighting activity. J Strength Cond Res 24:3457–3463

    Article  PubMed  Google Scholar 

  • Philippaerts RM, Westerterp KR, Lefevre J (2001) Comparison of two questionnaires with a triaxial accelerometer to assess physical activity patterns. Int J Sports Med 22:34–39

    Article  PubMed  CAS  Google Scholar 

  • Phillippaerts RM, Westerterp KM, Lefevre J (1999) Doubly-labelled water validation of three physical activity questionnaires. Int J Sports Med 20:284–289

    Article  Google Scholar 

  • Pino J, Martinez-Santos R, Moreno MI, Padilla C (2007) Automatic analysis of football games using GPS on real time. J Sports Sci Med Suppl 10:9

    Google Scholar 

  • Pober DM, Staudenmeyer J, Raphael C et al (2006) Development of novel techniques to classify physical activity mode using accelerometers. Med Sci Sports Exerc 38:1626–1634

    Article  PubMed  Google Scholar 

  • Prieur F, Castells J, Denis C (2003) A methodology to assess the accuracy of a portable metabolic system (VmaxST™) Med Sci Sports Exerc 35:879–885

    Google Scholar 

  • Prince SA, Adfamo KB, Hanmel ME et al. (2008) A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Activ 5:56

    Google Scholar 

  • Pugh LG (1958) Muscular exercise on Mount Everest. J Physiol (Lond) 141:233–261

    CAS  Google Scholar 

  • Rahaman MM, Durnin JVGA (1964) Changes in concentration of gases in the rubber bladders of Max-Planck respirometers. J Appl Physiol 19:1188–1191

    PubMed  CAS  Google Scholar 

  • Regnault V, Reiset J (1849) Récherches chimiques sur la respiration des animaux des diverses classes (Chemical research on the respiration of different classes of animals). Bachelier, Paris

    Google Scholar 

  • Reilly T, Bowen T (1984) Exertional costs of changes in directional modes of running. Percept Motor Skills 58:149–150

    Article  Google Scholar 

  • Rein H (1933) Ein Gaswechselschreiber: Über Versuche zur fortlaufenden Registrierung des respiratorischen Gaswechsels an Mensch und Tier (on methods for the continuous recording of respiratory gas exchange in humans and animals). Naunyn-Schmiedeberg Archiv exp Pathol Pharmakol 171:363–402

    Article  CAS  Google Scholar 

  • Richardson MT, Leon AS, Jacobs DR et al (1995) Ability of the Caltrac accelerometer to assess daily physical activity levels. J Cardiopulm Rehab 15:107–113

    Article  CAS  Google Scholar 

  • Rietjens GJWM, Kuipers H, Kester ADM et al (2001) Validation of a Computerized Metabolic Measurement System (Oxycon-Pro®) During Low and High Intensity Exercise. Int J Sports Med 22:291–294

    Article  PubMed  CAS  Google Scholar 

  • Robertson CH, Bradley ME, Homer LD (1980) Comparison of two and four magnetometer methods of measuring ventilation. J Appl Physiol 49:355–362

    PubMed  Google Scholar 

  • Robinson S (1938) Experimental studies of fitness in relation to age. Arbeitsphysiol 4:251–323

    Google Scholar 

  • Rodríguez DA, Brown AL, Troped PJ (2005) Portable global positioning units to complement accelerometry-based physical activity monitors. Med Sci Sports Exerc 37(11 Suppl):S521–S581

    Google Scholar 

  • Roe PG, Tyler CK, Tennant R et al (1987) Oxygen analysers. An evaluation of five fuel cell models. Anaesthesia 42:178–181

    Google Scholar 

  • Rolland JP, Baillot Y, Goon A (undated report) A survey of tracking technology for virtual environments. Center for Research and Education in Optics and Lasers, University of Central Florida, Orlando

  • Rubner M (1885) Kalorimetrische Untersuchungen (Calorimetric Investigations). Z Biol (Munich) 3:337–410

    Google Scholar 

  • Rubner M (1889) Ein Calorimeter für physiologische und hygienische Zwecke. (A calorimeter for physiologic and hygienic purposes). Z Biol (Munich) 25:400–426

    Google Scholar 

  • Rzewnicki R, Auweele YV, De Bourdeaudhuij I (2003) Addressing the issue of over-reporting on the International Physical Activity Questionnaire (IPAQ) telephone survey with a population sample. Publ Health Nutr 6:299–305

    Google Scholar 

  • Sackner MA, Watson H, Belsito A et al (1989) Calibration of respiratory inductive plethysmograph during natural breathing. J Appl Physiol 66:410–420

    PubMed  CAS  Google Scholar 

  • Sallis JF, Saelens BE (2000) Assessment of physical activity by self-report: status and limitations. Res Quart 71:1–14

    Google Scholar 

  • Sallis JF, Buono MJ, Roby JJ et al (1993) Seven-day recall and other physical activity self-reports in children and adolescents. Med Sci Sports Exerc 25:99–108

    Article  PubMed  CAS  Google Scholar 

  • Sarkin JA, Nichols JF, Sallis JF et al (2000) Self-report measures and scoring protocols affect prevalence estimates of meeting physical activity guidelines. Med Sci Sports Exerc 32:149–156

    Article  PubMed  CAS  Google Scholar 

  • Sawka MN, Dennis RC, Gonzalez RR et al (1987) Influence of polycythemia on blood volume and thermoregulation during exercise-heat stress. J Appl Physiol 62:912–918

    Article  PubMed  CAS  Google Scholar 

  • Schachter CL, Busch AJ, Peloso PM et al (2003) Effects of short versus long bouts of aerobic exercise in sedentary women with fibromyalgia: a randomized controlled trial. Phys Therapy 80:340–358

    Google Scholar 

  • Schneider PL, Crouter SE, Lukajic O et al (2003) Accuracy and reliability of 10 pedometers for measuring steps over a 400-m walk. Med Sci Sports Exerc 35:1779–1784

    Article  PubMed  Google Scholar 

  • Schoeller DA, van Santen E (1982) Measurement of energy expenditure in humans by doubly labelled water. J Appl Physiol 53:955–959

    PubMed  CAS  Google Scholar 

  • Scholander PF (1947) Analyser for accurate estimation of respiratory gases in half cubic centimeter samples. J Biol Chem 167:235–250

    PubMed  CAS  Google Scholar 

  • Schrack JA, Simonsick EM, Ferrucci L (2010) Comparison of the Cosmed K4b(2) portable metabolic system in measuring steady-state walking energy expenditure. PLoS One 5(2):e929

    Google Scholar 

  • Schuit AJ, Schouten EG, Westerterp KR et al (1997) Validity of the physical activity scale (PASE) for the elderly according to energy expenditure assessed by the double labeled water method. J Clin Epidemiol 50:541–546

    Article  PubMed  CAS  Google Scholar 

  • Seliger V (1966) Circulatory responses to sports activities. In: Evang K, Andersen KL (eds) Physical activity in health, disease. Williams & Wilkins, Baltimore

    Google Scholar 

  • Seliger V (1967) Energetický metabolismus u Vybraných telesných cviceni (Energy metabolism in various physical exercises). Faculty of Physical Exercise and Sport, Charles University, Prague, Czechoslovakia

  • Seliger V, Pachlopniková I, Mann M et al (1969) Energy expenditure during paddling. Physiol Bohemoslov 18:49–55

    PubMed  CAS  Google Scholar 

  • Severinghaus JW, Bradley AF (1958) Electrodes for blood pO2 and pCO2 determination. J Appl Physiol 13:515–520

    PubMed  CAS  Google Scholar 

  • Sharkey BJ, McDonald JF, Corbridge LG (1966) Pulse rate and pulmonary ventilation as predictors of human energy cost. Ergonomics 9:223–227

    Article  PubMed  CAS  Google Scholar 

  • Shephard RJ (1954) The carbon dioxide balance sheets of the body: their determination in normal subjects and in cases of congenital heart disease, with a consideration of their significance. London, UK: Dept. of Physiology, GFuy’s Hospital, University of London, Ph.D dissertation

  • Shephard RJ (1955a) A critical examination of Douglas bag technique. J Physiol (Lond) 127:515–524

    CAS  Google Scholar 

  • Shephard RJ (1955b) The immediate metabolic effects of breathing carbon dioxide mixtures. J Physiol (Lond) 129:393–407

    CAS  Google Scholar 

  • Shephard RJ (1955c) Pneumotachographic measurement of breathing capacity. Thorax 10:258–268

    Article  PubMed  CAS  Google Scholar 

  • Shephard RJ (1967a) Normal levels of activity in Canadian city dwellers. Can Med Assoc J 96:912–914

    PubMed  CAS  Google Scholar 

  • Shephard RJ (1967b) Pulse rate and ventilation as indices of habitual activity. I. Theoretical aspects. Arch Env Health 15:562–567

    CAS  Google Scholar 

  • Shephard RJ (1968a) Practical indices of metabolic activity. An experimental comparison of pulse rate and ventilation. Int Z angew Physiol 25:13–24

    PubMed  CAS  Google Scholar 

  • Shephard RJ (1968b) Intensity, duration and frequency of exercise as determinants of the response to a training regimen. Int Z Angew Physiol 26:272–278

    PubMed  CAS  Google Scholar 

  • Shephard RJ (1974) Men at Work. C.C. Thomas, Springfield

    Google Scholar 

  • Shephard RJ (1977) Endurance Fitness, 2nd edn. University of Toronto Press, Toronto

    Google Scholar 

  • Shephard RJ (1982a) The daily workload of the postal carrier. J Hum Ergol 11:157–164

    CAS  Google Scholar 

  • Shephard RJ (1982b) Physiology and biochemistry of exercise. Praeger Publications, New York

    Google Scholar 

  • Shephard RJ (1986) Fitness of a nation: lessons from the Canada fitness survey. Karger, Basel

    Google Scholar 

  • Shephard RJ (1994) Aerobic Fitness and Health. Human Kinetics, Champaign

    Google Scholar 

  • Shephard RJ (1997) Exercise and relaxation in health promotion. Sports Med 23:211–217

    Article  PubMed  CAS  Google Scholar 

  • Shephard RJ (1999a) How much physical activity is needed for good health? Int J Sports Med 20:23–27

    Article  PubMed  CAS  Google Scholar 

  • Shephard RJ (1999b) Biology and medicine of soccer: an update. J Sport Sci 17:757–786

    Article  CAS  Google Scholar 

  • Shephard RJ (2003) Limits to the measurement of habitual physical activity by questionnaires. Br J Sports Med 37:197–206

    Article  PubMed  CAS  Google Scholar 

  • Shephard RJ, Aoyagi Y (2010) Objective monitoring of physical activity in older adults: clinical and practical implications. Phys Therap Rev 15:170–182

    Article  Google Scholar 

  • Shephard RJ, McClure RL (1965) The prediction of cardiorespiratory fitness. Int Z Angew Physiol 21:212–223

    PubMed  CAS  Google Scholar 

  • Shephard RJ, Rode A (1996) The health consequences of ‘modernization’. Evidence from circumpolar peoples. Cambridge University Press, London

    Book  Google Scholar 

  • Shephard RJ, Jéquier JC, Lavallée H et al (1980) Habitual physical activity: effects of sex, milieu, season and required activity. J Sports Med Phys Fitness 20:55–66

    PubMed  CAS  Google Scholar 

  • Shvartz E, Shapiro Y, Magazanik A et al (1977) Heat acclimation, physical fitness, and responses to exercise in temperate and hot environments. J Appl Physiol 43:678–683

    PubMed  CAS  Google Scholar 

  • Shvartz E, Shapiro Y, Birnfield H et al (1978) Maximal oxygen intake, heat tolerance and rectal temperature. Med Sci Sports 10:256–260

    PubMed  CAS  Google Scholar 

  • Sidney KH (1975) Responses of elderly subjects to a program of progressive exercise training. Graduate Department of Physiological Hygiene. Ph.D, University of Toronto, Toronto

  • Simonson E (1928) Ein neuer Respirationsapparat (A new respiratory apparatus). Arbeitsphysiol 1:224–257

    CAS  Google Scholar 

  • Sims J, Smith F, Duffy A et al (1999) The vagaries of self-reports of physical activity: a problem revisited and addressed in a study of exercise promotion in the over 65s in general practice. Fam Prac 16:152–157

    Article  CAS  Google Scholar 

  • Sirard JR, Pate RR (2001) Physical activity assessment in children and adolescents. Sports Med 31:439–454

    Article  PubMed  CAS  Google Scholar 

  • Sjödin A, Andersson A, Högberg J et al (1994) Energy balance in cross country skiers. A study using doubly labeled water and dietary record. Med Sci Sports Exerc 26:720–724

    Article  PubMed  Google Scholar 

  • Slater CH, Green LW, Vernon SW et al (1987) Problems in estimating the prevalence of physical activity from national surveys. Prev Med 16:107–119

    Article  PubMed  CAS  Google Scholar 

  • Sleeswyk A (1981) Vitruvius's odometer. Scientif Amer 252:188–200

    Google Scholar 

  • Smith E (1859) Experimental enquiries into the chemical and other phenomena of respiration, and their modification by various agencies. PhilosophTrans R Soc Lond 149:681–714. (cited by Haldane 1955)

  • Soric M, Mikulic P, Misigoj-Durakovic M et al. (2011) Validation of the Sensewear Armband during recreational in-line skating. Eur J Appl Physiol. doi:10.1007/s00421-011-2045-6 (Online publication)

  • Southgate DAT, Shirling D (1970) The energy expenditure and food intake of the ship’s company of a submarine. Ergonomics 13:777–782

    Article  PubMed  CAS  Google Scholar 

  • Spriggs EA (1977) John Hutchinson, the inventor of the spirometer—his North Country background, life in London, and Scientific achievements. Med History 21:357–364

    CAS  Google Scholar 

  • Stagg D, Goldman M, Newsom Davis J (1978) Computer aided measurement of breath volume and time components using magnetometers. J Appl Physiol 44:623–633

    PubMed  CAS  Google Scholar 

  • Stephens T (1989) Fitness and activity measurements in the 1989 Canada Fitness Survey. Assessing physical fitness and physical activity. In: Drury T (ed) US Dept. of Health & Human Services, Hyattsville, MD, pp 401–432

  • Stephens T, Craig CL (1990) The well-being of Canadians: The 1988 Campbell’s Survey. Canadian Fitness & Lifestyle Research Institute, Ottawa

  • Stolen T, Chamari K, Castagna C et al (2005) Physiology of soccer: an update. Sports Med 35:501–536

    Article  PubMed  Google Scholar 

  • Stolwijk JA, Saltin B, Gagge AP (1968) Physiological factors associated with sweating during exercise. J Aerospace Med 39:1101–1105

    CAS  Google Scholar 

  • Taylor FW (1911) Principles of scientific management. Harper, New York

    Google Scholar 

  • Taylor HL, Jacobs DR, Schucker B et al (1978) A questionnaire for the assessment of leisure time physical activities. J Chron Dis 31:741–745

    Article  PubMed  CAS  Google Scholar 

  • Tigerstedt R (1906) Lehrbuch der Physiologie des Menschens (A textbook of human physiology) (translated by J R Murlin). D. Appleton, New York

    Google Scholar 

  • Treuth MS, Adolph AL, Butte NE (1998) Energy intake in children predicted from heart rate and activity calibrated against respiration calorimetry. Am J Physiol 275:E12–E18

    PubMed  CAS  Google Scholar 

  • Troped PJ, Oliveira MS, Matthews CE et al (2008) Prediction of activity mode with global positioning system and accelerometer data. Med Sci Sports Exerc 40:972–978

    Article  PubMed  Google Scholar 

  • Tudor-Locke C, Myers AM (2001) Methodological considerations for researchers and practitioners using pedometers to measure physical (ambulatory) activity. Res Quart 72:1–12

    CAS  Google Scholar 

  • Tudor-Locke C, Williams JE, Reis JP et al (2004) Utility of pedometers for assessing physical activity: construct validity. Sports Med 34:281–291

    Article  PubMed  Google Scholar 

  • Tudor-Locke C, Sisson SB, Lee SM et al (2006) Evaluation of quality of commercial pedometers. Can J Publ Hlth 97 (Suppl 1):S10-5–S10-6

    Google Scholar 

  • Uitenbroeck DG (1993) Seasonal variation in leisure time physical activity. Med Sci Sports Exerc 25:753–760

    Google Scholar 

  • Viteri FE, Torún B, Galicia JC et al (1971) Determining energy costs of agricultural activities by respirometer and energy balance techniques. Am J Clin Nutr 24:1418–1430

    PubMed  CAS  Google Scholar 

  • von der Heide RK, Zuntz N (1913) Respirations- und Stoffwechselversuche am Rinde über den Nährwert der Kartoffelschlempe und ihrer Ausgangsmaterialien (Respiratory and metabilic tests on the nutritional value of raw materials). Landwirtsch Jahrbuche 44:765–832

    CAS  Google Scholar 

  • von Pettenkofer M (1861) Ueber einen neuen Respirations-Apparat (On a new respiratory apparatus). Kgl. Bayer. Akademie der Wissenschaften (Royal Bavarian Academy of Sciences), Munich, Germany

  • von Pettenkofer M (1862-1863) Ueber die Respiration. (On respiration). Ann Chemie Pharm Supplement 2:1–52

  • Vuillemin A (1998) Revue des questionnaires d’évaluation de l’activité physique (A review of evaluation questionnaires for physical activity). Rev Epidemiol Santé Publique 46:49–55

    PubMed  CAS  Google Scholar 

  • Warburton DER, Katmarzyk PT, Rhodes RE et al (2007a) Evidence informed physical activity guidelines for Canadian adults. Appl Physiol Nutr Metab 32(Suppl 2E):S16–S68

    Article  Google Scholar 

  • Warburton DER, Katzmarzyk PT, Rhodes RE et al (2007b) Physical activity guidelines for adults. Appl Physiol Nutr Metab 32(Suppl. 2):S18–S68

    Google Scholar 

  • Warren JM, Ekelund U, Besson H et al (2010) Assessment of physical activity—a review of methodologies with reference to epidemiolgical research: a report of the exercise physiology section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur J Cardiovasc Prev Rehabil 17:127–139

    Article  PubMed  Google Scholar 

  • Washburn RA, Heath GW, Jackson AW (2000) Reliability and validity issues concerning large-scale surveillance of physical activity. Res Quart 71(Suppl. 2):S104–S113

    CAS  Google Scholar 

  • Weiss RW, Slater CH, Green LW et al (1990) The validity of single-item, self-assessment questions as measures of adult physical activity. J Clin Epidemiol 43:1123–1129

    Article  PubMed  CAS  Google Scholar 

  • Welk GJ, Almeida J, Morss G (2003) Laboratory calibration and validation of the Biotrainer and Actitrac activity monitors. Med Sci Sports Exerc 35:1057–1064

    Article  PubMed  Google Scholar 

  • Welk GJ, McClain JJ, Eisenmann JC et al (2007) Field validation of the MTI Actigraph and BodyMedia arm band monitor using the IDEEA monitor. Obesity 15:918–928

    Article  PubMed  Google Scholar 

  • Weller IR, Corey PN (1998) A study of the reliability of the Canada Fitness Survey questionnaire. Med Sci Sports Exerc 30:1530–1536

    Article  PubMed  CAS  Google Scholar 

  • Westerterp KR, Saris WHM, Van Es M et al (1986) Use of the doubly labeled water technique in man during heavy sustained exercise. J Appl Physiol 61:2162–2167

    PubMed  CAS  Google Scholar 

  • Westerterp KR, Kayser B, Brouns F et al (1992) Energy expenditure climbing Mt. Everest. J Appl Physiol 73:1815–1819

    PubMed  CAS  Google Scholar 

  • Whipp BJ, Wasserman K (1969) Efficiency of muscular work. J Appl Physiol 26:644–648

    PubMed  CAS  Google Scholar 

  • Whitney RJ (1953) The measurement of volume changes in human limbs. J Physiol 121:1–27

    PubMed  CAS  Google Scholar 

  • Wideman L, Stoudemire NM, Pass KA (1996) Assessment of the Aerosport TEEM 100 portable metabolic measurement system. Med Sci Sports Exerc 28:509–515

    PubMed  CAS  Google Scholar 

  • Willems JL, Abreu-Lima C, Arnaud P et al (1991) The diagnostic performance of computer programs for the interpretation of electrocardiograms. N Engl J Med 325:1767–1773

    Article  PubMed  CAS  Google Scholar 

  • Williams CL, Carter BJ, Eng A (1980) The “Know your body” program: a developmental approach to health education and disease prevention. Prev Med 9:371–383

    Article  PubMed  CAS  Google Scholar 

  • Wyndham CH (1966) An examination of the methods of physical classification of African labourers for manual work. S Afr Med J 40:275–278

    PubMed  CAS  Google Scholar 

  • Wolf ML (1995) Thomas Jefferson, Abraham Lincoln, Louis Brandeis and the mystery of the universe. Boston Univ J Sci Technol Law 1:1–15

    Google Scholar 

  • Wolff HS (1956) Modern techniques for measuring energy expenditure. Proc Nutr Soc 15:77–80

    Article  PubMed  CAS  Google Scholar 

  • Wolff HS (1958) The integrating motor pneumotachograph: a new instrument for the measurement of energy expenditure by indirect calorimetry. Quart J Exp Physiol 43:270–283

    PubMed  CAS  Google Scholar 

  • Wolff HS (1966) Physiological measurment of human subjects in the field, with special reference to a new approach to data storage. In: Yoshimura H, Weiner JS (eds) Human adaptability, its methodology. Japanese Society for the Promotion of Sciences, Tokyo

    Google Scholar 

  • Yasunaga A, Park H, Watanabe E et al (2007) Development and evaluation of the physical activity questionnaire for elderly Japanese: the Nakanojo Study. J Aging Phys Activ 15:398–411

    Google Scholar 

  • Yasunaga A, Togo F, Watanabe E, Park H et al (2008) Sex, age, season, and habitual physical activity of older Japanese: the Nakanojo Study. J Aging Phys Activ 16:3–13

    Google Scholar 

  • Yokoyama Y, Kawamura T, Tamakoshi A et al (2002) Comparison of accelerometry and oxymetry for measuring daily physical activity. Circulation 66:751–754

    Article  Google Scholar 

  • Zakeri I, Adolph AL, Puyatt MR et al (2008) Application of cross-sectional time series modeling for the prediction of energy expenditures from heart rate and accelerometry. J Appl Physiol 104:1665–1673

    Article  PubMed  Google Scholar 

  • Zuntz N, Loewy A, Müller F et al (1906) Höhenklima und Bergwanderungen (High altitudes and mountain walking). Deutsches Verlagshaus, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy J. Shephard.

Additional information

Communicated by Nigel A. S. Taylor.

Appendix

Appendix

Web-linkages offering photographs of key investigators and pieces of equipment (all accessed 12 October, 2011).

Key investigators

Wilbur Atwater: http://en.wikipedia.org/wiki/Wilbur_Olin_Atwater

Sir Joseph Barcroft: http://www.sciencephoto.com/media/223512/view

Leonardo da Vinci: http://en.wikipedia.org/wiki/Leonardo_da_Vinci

Eugene DuBois: http://www.nap.edu/html/biomems/edubois.pdf

Frank Bunker Gilbreth: http://en.wikipedia.org/wiki/Frank_Bunker_Gilbreth,_Sr.

John Scott Haldane: http://www.rsc.org/…/HaldanesBloodGasAnalyser.asp

Felix Hoppe-Seyler: http://en.wikipedia.org/wiki/Felix_Hoppe-Seyler

James Joule: http://en.wikipedia.org/wiki/James_Prescott_Joule

William Kannel: http://www.nytimes.com/2011/08/23/health/23kannel.html?_r=1&partner=rss&emc=rss

August Krogh: http://www.nobelprize.org/…/1920/krogh-bio.html

Antoine Lavoisier: http://en.wikipedia.org/wiki/Antoine_Lavoisier

Johannes Lindhard: A-L Perrelet: http://en.wikipedia.org/wiki/Abraham-Louis_Perrelet

Brian Lloyd: www.brookes.ac.uk/alumni_card/lloyd-memorial-service-nov-13.pdf

Graham Lusk: http://www.asbmb.org/uploadedfiles/aboutus/asbmb_history/past_presidents/1910s/1914Lusk.html

Jeremy Morris: http://www.telegraph.co.uk/news/obituaries/medicine-obituaries/6488393/Professor-Jeremy-Morris.html

Ralph Paffenbarger: http://www.epidemiologic.org/2007/09/obituary-of-epidemiology-legend-ralph-s.html

Max von Pettenkofer: http://en.wikipedia.org/wiki/Max_Joseph_von_Pettenkofer

Victor Regnault: http://en.wikipedia.org/wiki/Henri_Victor_Regnault

Max Rubner: http://en.wikipedia.org/wiki/Max_Rubner

Edward Smith: http://en.wikipedia.org/wiki/Edward_Smith_(physician)

Nathan Zuntz: http://www.sciencedirect.com/science/book/9780123747402

Equipment

CosMed oxygen consumption monitor: http://www.youtube.com/watch?v=rtMPEPIk5Mw

Douglas bag: http://www.aber.ac.uk/en/media/douglasbag.jpg

Holter monitor: http://en.wikipedia.org/wiki/Holter_monitor

Ice-calorimeter: http://en.wikipedia.org/wiki/Calorimetry

Odometer (Vitrivius): http://en.history-of-physics.com/antike/griechenland_hodometer.htm

Pedometer: http://en.wikipedia.org/wiki/Pedometer

Pulse monitor: http://www.cosycommunications.com/Digitalpulsemonitorcatalogue.htm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shephard, R.J., Aoyagi, Y. Measurement of human energy expenditure, with particular reference to field studies: an historical perspective. Eur J Appl Physiol 112, 2785–2815 (2012). https://doi.org/10.1007/s00421-011-2268-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-2268-6

Keywords

Navigation