Skip to main content
Log in

Effect of heliox on heart rate kinetics and dynamic hyperinflation during high-intensity exercise in COPD

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Respiratory mechanical abnormalities in patients with chronic obstructive pulmonary disease (COPD) may impair cardiodynamic responses and slow down heart rate (HR) kinetics compared with normal resulting in reduced convective oxygen delivery during exercise. We reasoned that heliox breathing (79% helium–21% oxygen) and the attendant reduction of operating lung volumes should accelerate HR kinetics in the transition from rest to high-intensity exercise. Eleven male ambulatory patients with clinically stable COPD undertook constant work-rate cycle testing at 80% of each individuals’ maximum work capacity while breathing room air (RA) or heliox (HX), randomly. Mean response time (MRT) for HR and dynamic end-expiratory lung volume (EELV) were measured. Resting EELV was not affected by HX breathing, while exercise EELV decreased significantly by 0.23 L at isotime during HX breathing compared with RA. During HX breathing, MRT for HR significantly accelerated (p = 0.002) by an average of 20 s (i.e., 17%). Speeded MRT for HR correlated with indices of reduced lung hyperinflation, such as EELV at isotime (r = 0.88, p = 0.03), and with improved exercise endurance time (r = −0.64, p = 0.03). The results confirm that HX-induced reduction of dynamic lung hyperinflation is associated with consistent improvement in indices of cardio-circulatory function such as HR kinetics in the rest-to-exercise transition in COPD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Babcock MA, Paterson DH, Cunningham DA, Dickinson JR (1994) Exercise on-transient gas exchange kinetics are slowed as a function of age. Med Sci Sports Exerc 26:440–446

    CAS  PubMed  Google Scholar 

  • Borg GAV (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381

    CAS  PubMed  Google Scholar 

  • Borghi-Silva A, Oliveira CC, Carrascosa C, Maia J, Berton DC, Queiroga F Jr, Ferreira EM, Almeida DR, Nery LE, Neder JA (2008) Respiratory muscle unloading improves leg muscle oxygenation during exercise in patients with COPD. Thorax 63:910–915

    Article  CAS  PubMed  Google Scholar 

  • Buda AJ, Pinsky MR, Ingels NB, Daughters GT, Stinson EB, Alderman EL (1979) Effect of intrathoracic pressure on left ventricular performance. N Engl J Med 301:453–459

    Article  CAS  PubMed  Google Scholar 

  • Casaburi R, Daly J, Hansen JE, Effros RM (1989) Abrupt changes in mixed venous blood gas composition after the onset of exercise. J Appl Physiol 67:1106–1112

    CAS  PubMed  Google Scholar 

  • Casaburi R, Porszasz J, Burns MR, Carithers ER, Chang RS, Cooper CB (1997) Physiologic benefits of exercise training in rehabilitation of patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 155:1541–1551

    CAS  PubMed  Google Scholar 

  • Chiappa GR, Borghi-Silva A, Ferreira LF, Carrascosa C, Oliveira CC, Maia J, Gimenes AC, Queiroga F Jr, Berton D, Ferreira EM, Nery LE, Neder JA (2008) Kinetics of muscle deoxygenation are accelerated at the onset of heavy-intensity exercise in patients with COPD: relationship to central cardiovascular dynamics. J Appl Physiol 104:1341–1350

    Article  PubMed  Google Scholar 

  • Chiappa GR, Queiroga F Jr, Meda E, Ferreira LF, Diefenthaeler F, Nunes M, Vaz MA, Machado MC, Nery LE, Neder JA (2009) Heliox improves oxygen delivery and utilization during dynamic exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 179:1004–1010

    Article  PubMed  Google Scholar 

  • DeLorey DS, Kowalchuk JM, Paterson DH (2005) Adaptation of pulmonary O2 uptake kinetics and muscle deoxygenation at the onset of heavy-intensity exercise in young and older adults. J Appl Physiol 98:1697–1704

    Article  PubMed  Google Scholar 

  • Eves ND, Petersen SR, Haykowsky MJ, Wong EY, Jones RL (2006) Helium-hyperoxia, exercise, and respiratory mechanics in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 174:763–771

    Article  PubMed  Google Scholar 

  • Gandevia B, Hugh-Jones P (1957) Terminology for measurements of ventilatory capacity; a report to the thoracic society. Thorax 12:290–293

    Article  CAS  PubMed  Google Scholar 

  • Heindl S, Lehnert M, Criee CP, Hasenfuss G, Andreas S (2001) Marked sympathetic activation in patients with chronic respiratory failure. Am J Respir Crit Care Med 164:597–601

    CAS  PubMed  Google Scholar 

  • Lamarra NB, Whipp BJ, Ward SA, Wasserman K (1987) Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics. J Appl Physiol 62:2003–2012

    Article  CAS  PubMed  Google Scholar 

  • Laveneziana P, O’Donnell DE, Ofir D, Agostoni P, Padeletti L, Ricciardi G, Palange P, Duranti R, Scano G (2009a) Effect of biventricular pacing on ventilatory and perceptual responses to exercise in patients with stable chronic heart failure. J Appl Physiol 106:1574–1583

    Article  PubMed  Google Scholar 

  • Laveneziana P, Palange P, Ora J, Martolini D, O’Donnell DE (2009b) Bronchodilator effect on ventilatory, pulmonary gas exchange, and heart rate kinetics during high-intensity exercise in COPD. Eur J Appl Physiol 107:633–643

    Article  PubMed  Google Scholar 

  • Lee DL, Lee H, Chang HW, Chang AY, Lin SL, Huang YC (2005) Heliox improves hemodynamics in mechanically ventilated patients with chronic obstructive pulmonary disease with systolic pressure variations. Crit Care Med 33:968–973

    Article  PubMed  Google Scholar 

  • McLoughlin P, Popham P, Linton RA, Bruce RC, Band DM (1992) Use of arterialized venous blood sampling during incremental exercise tests. J Appl Physiol 73:937–940

    CAS  PubMed  Google Scholar 

  • Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J, ATS/ERS Task Force (2005) Standardisation of spirometry. Eur Respir J 26:319–338

    Article  CAS  PubMed  Google Scholar 

  • Montes de Oca M, Rassulo J, Celli BR (1996) Respiratory muscle and cardiopulmonary function during exercise in very severe COPD. Am J Respir Crit Care Med 154:1284–1289

    CAS  PubMed  Google Scholar 

  • Nemery B, Nullens W, Veriter L, Brasseur L, Frans A (1983) Effect of gas density on pulmonary gas exchange of normal man at rest and during exercise. Pflügers Arch 397:57–61

    Article  CAS  PubMed  Google Scholar 

  • Nery LE, Wasserman K, Andrews JD, Huntsman DJ, Hansen JE, Whipp BJ (1982) Ventilatory and gas exchange kinetics during exercise in chronic airways obstruction. J Appl Physiol 53:1594–1602

    CAS  PubMed  Google Scholar 

  • O’Donnell DE, Webb KA (1993) Exertional breathlessness in patients with chronic airflow limitation. The role of lung hyperinflation. Am Rev Respir Dis 148:1351–1357

    PubMed  Google Scholar 

  • O’Donnell DE, Hamilton AL, Webb KA (2006) Sensory–mechanical relationships during high-intensity, constant-work-rate exercise in COPD. J Appl Physiol 101:1025–1035

    Article  PubMed  Google Scholar 

  • Palange P, Valli G, Onorati P, Antonucci R, Paoletti P, Rosato A, Manfredi F, Serra P (2004) Effect of heliox on lung dynamic hyperinflation, dyspnea, and exercise endurance capacity in COPD patients. J Appl Physiol 97:1637–1642

    Article  CAS  PubMed  Google Scholar 

  • Polverino E, Gómez FP, Manrique H, Soler N, Roca J, Barberà JA, Rodríguez-Roisin R (2007) Gas exchange response to short-acting beta2-agonists in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med 176:350–355

    Article  CAS  PubMed  Google Scholar 

  • Puente-Maestu L, Sánz ML, Sánz P, Ruíz de Oña JM, Rodríguez-Hermosa JL, Whipp BJ (2000) Effects of two types of training on pulmonary and cardiac responses to moderate exercise in patients with COPD. Eur Respir J 15:1026–1032

    Article  CAS  PubMed  Google Scholar 

  • Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC (1993) Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl 16:5–40

    CAS  PubMed  Google Scholar 

  • Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukuchi Y, Jenkins C, Rodriguez-Roisin R, van Weel C, Zielinski J, Global Initiative for Chronic Obstructive Lung Disease (2007) Global strategy for diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 176:532–555

    Article  PubMed  Google Scholar 

  • Raupach T, Bahr F, Herrmann P, Luethje L, Heusser K, Hasenfuss G, Bernardi L, Andreas S (2008) Slow breathing reduces sympathoexcitation in COPD. Eur Respir J 32:387–392

    Article  CAS  PubMed  Google Scholar 

  • Riley M, Pórszász J, Stanford CF, Nicholls DP (1994) Gas exchange responses to constant work rate exercise in chronic cardiac failure. Br Heart J 72:150–155

    Article  CAS  PubMed  Google Scholar 

  • Saito S, Miyamoto K, Nishimura M, Aida A, Saito H, Tsujino I, Kawakami Y (1999) Effects of inhaled bronchodilators on pulmonary hemodynamics at rest and during exercise in patients with COPD. Chest 115:376–382

    Article  CAS  PubMed  Google Scholar 

  • Sietsema KE (1992) Oxygen uptake kinetics in response to exercise in patients with pulmonary vascular disease. Am Rev Respir Dis 145:1052–1057

    CAS  PubMed  Google Scholar 

  • Stubbing DG, Pengelly LD, Morse JL, Jones NL (1980) Pulmonary mechanics during exercise in subjects with chronic airflow obstruction. J Appl Physiol 49:511–515

    CAS  PubMed  Google Scholar 

  • Travers J, Laveneziana P, Webb KA, Kesten S, O’Donnell DE (2007) Effect of tiotropium bromide on the cardiovascular response to exercise in COPD. Respir Med 101:2017–2024

    Article  CAS  PubMed  Google Scholar 

  • Undem BJ, Kollarik M (2005) The role of vagal afferent nerves in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2:355–360

    Article  PubMed  Google Scholar 

  • Vassaux C, Torre-Bouscoulet L, Zeineldine S, Cortopassi F, Paz-Díaz H, Celli BR, Pinto-Plata VM (2008) Effects of hyperinflation on the oxygen pulse as a marker of cardiac performance in COPD. Eur Respir J 32:1275–1282

    Article  CAS  PubMed  Google Scholar 

  • Vogiatzis I, Georgiadou O, Golemati S, Aliverti A, Kosmas E, Kastanakis E, Geladas N, Koutsoukou A, Nanas S, Zakynthinos S, Roussos C (2005) Patterns of dynamic hyperinflation during exercise and recovery in patients with severe chronic obstructive pulmonary disease. Thorax 60:723–729

    Article  CAS  PubMed  Google Scholar 

  • Wanger J, Clausen JL, Coates A, Pedersen OF, Brusasco V, Burgos F, Casaburi R, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Hankinson J, Jensen R, Johnson D, MacIntyre N, McKay R, Miller MR, Navajas D, Pellegrino R, Viegi G (2005) Standardisation of the measurement of lung volumes. Eur Respir J 26:511–522

    Article  CAS  PubMed  Google Scholar 

  • Warner HR, Cox A (1962) A mathematical model of heart rate control by sympathetic and vagus efferent information. J Appl Physiol 17:349–355

    CAS  PubMed  Google Scholar 

  • Wasserman K, Hansen JE, Sue DY, Casaburi R, Whipp BJ (1999) Principles of exercise testing and interpretation, 3rd edn. Lippincott Williams and Wilkins, Baltimore, MD

    Google Scholar 

  • Whipp BJ, Wasserman K (1972) Oxygen uptake kinetics for various intensities of constant-load work. J Appl Physiol 33:351–356

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Palange.

Additional information

Communicated by Susan Ward.

P. Laveneziana and G. Valli have equally contributed to the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laveneziana, P., Valli, G., Onorati, P. et al. Effect of heliox on heart rate kinetics and dynamic hyperinflation during high-intensity exercise in COPD. Eur J Appl Physiol 111, 225–234 (2011). https://doi.org/10.1007/s00421-010-1643-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1643-z

Keywords

Navigation