Skip to main content
Log in

Panoramic ultrasonography is a valid method to measure changes in skeletal muscle cross-sectional area

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to examine the reliability and validity of the “panoramic” brightness mode ultrasonography (US) method to detect training-induced changes in muscle cross-sectional area (CSA) by comparison with results obtained using magnetic resonance imaging (MRI). Out of 27 young male volunteers, 20 subjects were assigned to training group and seven to non-training control group. Muscle CSAs of vastus lateralis were analyzed by MRI and US before and after 21 weeks of either heavy resistance training or control period. Measured by both the US and MRI, the resistance training induced significant increases (~13–14%, P < 0.001) in muscle CSA, whereas no changes were observed in control group. A high repeatability was found between the two consequent US measurements (intraclass correlation coefficient, ICC of 0.997) with standard error of measurement (SEM) of 0.38 cm2 and smallest detectable difference of 1.1 cm2. Validity of the US method against MRI in assessing CSA of VL produced ICC of 0.905 and SEM of 0.87 cm2 with high limits of agreement analyzed by Bland and Altman method. However, the MRI produced systematically (10 ± 4%, P < 0.01) larger CSA values than the US method. The US showed high agreement against MRI in detecting changes in muscle CSA (ICC of 0.929, SEM of 0.94 cm2). The results of this study showed that the panoramic US method provides repeatable measures of a muscle CSA although MRI produced larger absolute CSA values. Moreover, this US method detects training-induced changes in muscle CSA with a comparable degree of precision to MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bemben MG (2002) Use of diagnostic ultrasound for assessing muscle size. J Strength Cond Res 16:103–108

    Article  PubMed  Google Scholar 

  • Beneke R, Neuerburg J, Bohndorf K (1991) Muscle cross-section measurement by magnetic resonance imaging. Eur J Appl Physiol Occup Physiol 63:424–429

    Article  CAS  PubMed  Google Scholar 

  • Berg HE, Tedner B, Tesch PA (1993) Changes in lower limb muscle cross-sectional area and tissue fluid volume after transition from standing to supine. Acta Physiol Scand 148:379–385

    Article  CAS  PubMed  Google Scholar 

  • Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    CAS  PubMed  Google Scholar 

  • Dons B, Bollerup K, Bonde-Petersen F, Hancke S (1979) The effect of weight-lifting exercise related to muscle fiber composition and muscle cross-sectional area in humans. Eur J Appl Physiol Occup Physiol 40:95–106

    Article  CAS  PubMed  Google Scholar 

  • Engstrom CM, Loeb GE, Reid JG, Forrest WJ, Avruch L (1991) Morphometry of the human thigh muscles. A comparison between anatomical sections and computer tomographic and magnetic resonance images. J Anat 176:139–156

    CAS  PubMed  Google Scholar 

  • Esformes JI, Narici MV, Maganaris CN (2002) Measurement of human muscle volume using ultrasonography. Eur J Appl Physiol 87:90–92

    Article  PubMed  Google Scholar 

  • Häkkinen K, Pakarinen A, Kraemer WJ, Häkkinen A, Valkeinen H, Alen M (2001) Selective muscle hypertrophy, changes in EMG and force, and serum hormones during strength training in older women. J Appl Physiol 91:569–580

    PubMed  Google Scholar 

  • Howe TE, Oldham JA (1996) The reliability of measuring quadriceps cross-sectional area with compound B ultrasound scanning. Physiother Res Int 1:112–126

    CAS  PubMed  Google Scholar 

  • Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA (2009) Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino Acids 37:297–308

    Article  CAS  PubMed  Google Scholar 

  • Ikai M, Fukunaga T (1968) Calculation of muscle strength per unit cross-sectional area of human muscle by means of ultrasonic measurement. Int Z Angew Physiol Einschl Arbeitsphysiol 26:26–32

    CAS  Google Scholar 

  • Kanehisa H, Ikegawa S, Fukunaga T (1998) Body composition and cross-sectional areas of limb lean tissues in Olympic weight lifters. Scand J Med Sci Sports 8:271–278

    CAS  PubMed  Google Scholar 

  • Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D, Ross R (1998) Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol 85:115–122

    CAS  PubMed  Google Scholar 

  • Rankin G, Stokes M (1998) Reliability of assessment tools in rehabilitation: an illustration of appropriate statistical analyses. Clin Rehabil 12:187–199

    Article  CAS  PubMed  Google Scholar 

  • Reeves ND, Maganaris CN, Narici MV (2004a) Ultrasonographic assessment of human skeletal muscle size. Eur J Appl Physiol 91:116–118

    Article  PubMed  Google Scholar 

  • Reeves ND, Narici MV, Maganaris CN (2004b) Effect of resistance training on skeletal muscle-specific force in elderly humans. J Appl Physiol 96:885–892

    Article  CAS  PubMed  Google Scholar 

  • Sipilä S, Suominen H (1993) Muscle ultrasonography and computed tomography in elderly trained and untrained women. Muscle Nerve 16:294–300

    Article  PubMed  Google Scholar 

  • Sipilä S, Suominen H (1996) Quantitative ultrasonography of muscle: detection of adaptations to training in elderly women. Arch Phys Med Rehabil 77:1173–1178

    Article  PubMed  Google Scholar 

  • Walton JM, Roberts N, Whitehouse GH (1997) Measurement of the quadriceps femoris muscle using magnetic resonance and ultrasound imaging. Br J Sports Med 31:59–64

    Article  CAS  PubMed  Google Scholar 

  • Weir JP (2005) Quantifying test–retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res 19:231–240

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported in part by a grant from the Ministry of Education, Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha P. Ahtiainen.

Additional information

Communicated by Roberto Bottinelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahtiainen, J.P., Hoffren, M., Hulmi, J.J. et al. Panoramic ultrasonography is a valid method to measure changes in skeletal muscle cross-sectional area. Eur J Appl Physiol 108, 273–279 (2010). https://doi.org/10.1007/s00421-009-1211-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1211-6

Keywords

Navigation