Skip to main content
Log in

The effect of endurance training on changes in purine metabolism: a longitudinal study of competitive long-distance runners

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The purpose of the study was to characterize the changes in purine metabolism in long-distance runners in the main phases of their 1-year training cycle. Nine male athletes competing in distances 5 and 10 km at national/regional level, mean age 22.9 ± 0.6 years, practising sport for 8.6 ± 0.3 years, participated in the study. The changes in plasma concentrations of hypoxanthine (Hx), xanthine (X) and uric acid (UA) and the activity of the enzyme HGPRT in red blood cells haemolysate were followed in four characteristic points of the annual training cycle: preparatory phase (specific subphase), competition period, transition period and preparatory phase (intermediate subphase). Resting and postexercise plasma concentrations of X and, Hx and HGPRT activity changed significantly during 1-year training cycle. Significant changes in postexercise Hx values between training phases were found, from 9.3 μmol l−1 in competition period to 22.9 μmol l−1 in transition period (Friedmann’s ANOVA, P < 0.01). Postexercise UA values ranged from 371 to 399 μmol l−1 and did not change significantly between training phases. An increase in resting (from 52.0 to 58.4 IMP mg−1 Hb min−1, P < 0.05) and postexercise (from 70.7 to 76.2 IMP mg−1 Hb min−1, not significant) HGPRT activity between the specific preparation and competition period was observed. In the transition period, Hx postexercise concentration increased (22.9 μmol l−1, P < 0.01) and HGPRT postexercise activity decreased (58.8 IMP mg−1 Hb min−1, P < 0.01) significantly. The results indicate that the level of plasma Hx at rest and after standard exercise may be a useful tool for monitoring the adaptation of energetic processes in different training phases and support the overload/overtraining diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baldwin J, Snow RJ, Febbraio MA (2000) Effect of training status and relative exercise intensity on physiological responses in men. Med Sci Sports Exerc 32(9):1648–1654. doi:10.1097/00005768-200009000-00020

    Article  PubMed  CAS  Google Scholar 

  • Balsom PB, Seger JY, Sjödin B, Ekblom B (1992) Physiological response to maximal intensity intermittent exercise. Eur J Appl Physiol 65(2):144–149. doi:10.1007/BF00705072

    Article  CAS  Google Scholar 

  • Banaszak F (1999) The metabolism of purine and pyrimidine nucleotides in essential hypertension. The assessment of influence of antihypertensive drugs (in Polish). Monographic Book no. 341, University School of Physical Education, Poznań

  • Banaszak F, Rychlewski T (1989) Adenylate metabolism in physical exercise. Biol Sport 6(4):255–268

    Google Scholar 

  • Banaszak F, Rychlewski T (1992) Selected problems of nitric metabolism of adenylic nucleotides: level of oxypurines and ammonia in conditions of physical effort. Stud Phys Cult Tour 2:115–122

    Google Scholar 

  • Bangsbo J, Sjödin B, Hellsten-Westing Y (1992) Exchange of hypoxanthine in muscle during intense exercise in man. Acta Physiol Scand 146(4):549–550. doi:10.1111/j.1748-1716.1992.tb09465.x

    Article  PubMed  CAS  Google Scholar 

  • Becker BF (1993) Towards the physiological function of uric acid. Free Radic Biol Med 14(6):615–631. doi:10.1016/0891-5849(93)90143-I

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya AK, Panda PK, Das Gupta PK, De AK (1983) Pattern of venous lactate and pyruvate after submaximal exercise in athletes training in different disciplines. Int J Sports Med 4(4):252–254. doi:10.1055/s-2008-1026044

    Article  PubMed  CAS  Google Scholar 

  • Bianchi GP, Grossi G, Bargossi AM, Fiorella PL, Marchesini G (1999) Can oxypurines plasma levels classify the type of physical exercise? J Sports Med Phys Fitness 39(2):123–127

    PubMed  CAS  Google Scholar 

  • Bompa T (1999) Periodization: theory and methodology of training. Human Kinetics, Champaign, pp 147–311

    Google Scholar 

  • Boulieu R, Bory C, Baltasat P, Gonnet C (1983) Hypoxanthine and xanthine levels determined by high performance liquid chromatography in plasma, erythrocyte and urine samples from healthy subjects: the problem of hypoxanthine level evolution as a function of time. Anal Biochem 129(2):398–404. doi:10.1016/0003-2697(83)90568-7

    Article  PubMed  CAS  Google Scholar 

  • De Bono DP (1994) Free radicals and antioxidants in vascular biology: the roles of reaction kinetics, environment and substrate turnover. QJM 87(8):445–453

    PubMed  Google Scholar 

  • Green HJ, Jones S, Ball-Burnett M, Farrance B, Ranney D (1995) Adaptations in muscle metabolism to prolonged exercise and training. J Appl Physiol 78(1):138–145

    PubMed  CAS  Google Scholar 

  • Gutmann J, Wahlenfeld AW (1974) l-/± lactate determination with lactate dehydrogenase and NAD. In: Bergmayer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 1586–1587

    Google Scholar 

  • Harkness RA, Simmonds RJ, Coade SB (1983) Purine transport and metabolism in man: the effect of exercise on concentrations of purine bases, nucleosides and nucleotides in plasma, urine, leucocytes and erythrocytes. Clin Sci 64(3):333–340

    PubMed  CAS  Google Scholar 

  • Hellsten Y, Tullson PC, Richter EA, Bangsbo J (1997) Oxidation of urate in human skeletal-muscle during exercise. Free Radic Biol Med 22(1–2):169–174. doi:10.1016/S0891-5849(96)00286-9

    Article  PubMed  CAS  Google Scholar 

  • Hellsten Y, Svensson M, Sjödin B, Smith S, Christensen A, Richter EA, Bangsbo J (2001) Allantoin formation and urate and glutathione exchange in human muscle during submaximal exercise. Free Radic Biol Med 31(11):1313–1322. doi:10.1016/S0891-5849(01)00631-1

    Article  PubMed  CAS  Google Scholar 

  • Hellsten-Westing Y, Ekblom B, Sjödin B (1989) The metabolic relation between hypoxanthine and uric acid in man following maximal short-distance running. Acta Physiol Scand 137(3):341–345. doi:10.1111/j.1748-1716.1989.tb08762.x

    Article  Google Scholar 

  • Hellsten-Westing Y, Balsom PD, Norman B, Sjödin B (1993a) The effect of high-intensity training on purine metabolism in man. Acta Physiol Scand 149(4):405–412. doi:10.1111/j.1748-1716.1993.tb09636.x

    Article  PubMed  CAS  Google Scholar 

  • Hellsten-Westing Y, Norman B, Balsom PD, Sjödin B (1993b) Decreased resting level of adenine nucleotides in human skeletal muscle after high–intensity training. J Appl Physiol 74(5):2523–2528

    PubMed  CAS  Google Scholar 

  • Hellsten-Westing Y, Ekblom B, Kaijser L, Sjödin B (1994) Exchange of purines in human liver and skeletal muscle with short term exhaustive exercise. Am J Physiol 266:R81–R86

    PubMed  CAS  Google Scholar 

  • Jarasch ED, Bruder G, Heid HW (1986) Significance of xanthine oxidase in capillary endothelial cells. Acta Physiol Scand Suppl 548:39–46

    PubMed  CAS  Google Scholar 

  • Ketai LH, Simon RH, Kreit JW, Grum CM (1987) Plasma hypoxanthine and exercise. Am Rev Respir Dis 136(1):98–101

    PubMed  CAS  Google Scholar 

  • Moyer JD, Henderson JF (1983) Salvage of circulating hypoxanthine by tissues of the mouse. Can J Biochem Cell Biol 61(11):1153–1157

    Article  PubMed  CAS  Google Scholar 

  • Murray AW (1971) The biological significance of purine salvage. Annu Rev Biochem 40:811–826. doi:10.1146/annurev.bi.40.070171.004115

    Article  PubMed  CAS  Google Scholar 

  • Parks DA, Granger DN (1986) Xanthine oxidase: biochemistry, distribution and physiology. Acta Physiol Scand Suppl 548:87–99

    PubMed  CAS  Google Scholar 

  • Ralston MA, Merola JA, Leier CV (1991) Depressed aerobic enzyme activity of skeletal muscle in severe chronic heart failure. J Lab Clin Med 117(5):370–372

    PubMed  CAS  Google Scholar 

  • Rychlewski T Banaszak F, Szczęśniak Ł, Jastrzębski A (1994) Activity of hypoxanthine–guanine–phosphoribosyltransferase (HGPRT) in healthy individuals and in the cases of metabolic civilization-related diseases. In: International congress on applied research in sport “The Way to Win”, The Finnish Society for Research in Sport and Physical Education, Helsinki, p 33 (Abstract)

  • Rychlewski T, Banaszak F, Szczęśniak Ł, Konys L, Jastrzębski A (1997) Hypoxanthin im Blutplasma als Indikator der Intensität von körperlicher Anstrengung. Sportonomics 1:47–52

    Google Scholar 

  • Sahlin K, Ekberg K, Cizinsky S (1991) Changes in plasma hypoxanthine and free radical markers during exercise in man. Acta Physiol Scand 142(2):275–281. doi:10.1111/j.1748-1716.1991.tb09157.x

    Article  PubMed  CAS  Google Scholar 

  • Sahlin K, Tonkonogi M, Söderlund K (1999) Plasma hypoxanthine and ammonia in humans during prolonged exercise. Eur J Appl Physiol Occup Physiol 80(5):417–422. doi:10.1007/s004210050613

    Article  PubMed  CAS  Google Scholar 

  • Sjödin B, Hellsten-Westing Y (1990) Changes in plasma concentration of hypoxanthine and uric acid in man with short-distance running at various intensities. Int J Sports Med 11(6):493–495. doi:10.1055/s-2007-1024844

    Article  PubMed  Google Scholar 

  • Sjödin B, Jacobs I, Svedenhag J (1982) Changes in onset of blood lactate accumulation (OBLA) and muscle enzymes after training at OBLA. Eur J Appl Physiol Occup Physiol 49(1):45–57. doi:10.1007/BF00428962

    Article  PubMed  Google Scholar 

  • Spencer M, Bishop D, Lawrence S (2004) Longitudinal assessment of the effects of field hockey training on repeated sprint ability. J Sci Med Sport 7(3):323–334. doi:10.1016/S1440-2440(04)80027-6

    Article  PubMed  CAS  Google Scholar 

  • Stathis CG, Febbraio MA, Carey MF, Snow RJ (1994) Influence of sprint training on human skeletal muscle purine nucleotide metabolism. J Appl Physiol 76(4):1802–1809

    PubMed  CAS  Google Scholar 

  • Stathis CG, Zhao S, Carey MF, Snow RJ (1999) Purine loss after repeated sprint bouts in humans. J Appl Physiol 87(6):2037–2042

    PubMed  CAS  Google Scholar 

  • Stathis CG, Carey MF, Hayes A, Garnham AP, Snow RJ (2006) Sprint training reduces urinary purine loss following intense exercise in humans. Appl Physiol Nutr Metab 31(6):702–708. doi:10.1139/H06-074

    Article  PubMed  Google Scholar 

  • Stolk JN, De Abreu RA, Boerbooms AMT, de Koning DGM, de Graaf R, Kerstens PJSM, van de Putte LBA (1995) Purine enzyme activities in peripheral blood mononuclear cells: comparison of a new non-radiochemical high-performance liquid chromatography procedure and a radiochemical thin-layer chromatography procedure. J Chromatogr B Anal Technol Biomed Life Sci 666:33–43. doi:10.1016/0378-4347(94)00571-L

    Article  CAS  Google Scholar 

  • Sutton JR, Toews CJ, Ward R (1980) Purine metabolism during strenuous exercise in man. Metabolism 29(3):254–260. doi:10.1016/0026-0495(80)90067-0

    Article  PubMed  CAS  Google Scholar 

  • Tullson PC, Whitlock DM, Terjung RL (1990) Adenine nucleotide degradation in slow-twitch red muscle. Am J Physiol Cell Physiol 258:C258–C265

    CAS  Google Scholar 

  • Wung WE, Howell SB (1980) Simultaneous liquid chromatography of 5-fluorouracil, uridine, hypoxanthine, xanthine, uric acid, allopurinol and oxipurinol in plasma. Clin Chem 26(12):1704–1708

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Kusy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zieliński, J., Rychlewski, T., Kusy, K. et al. The effect of endurance training on changes in purine metabolism: a longitudinal study of competitive long-distance runners. Eur J Appl Physiol 106, 867–876 (2009). https://doi.org/10.1007/s00421-009-1079-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1079-5

Keywords

Navigation