Skip to main content
Log in

Pattern of deoxy[Hb + Mb] during ramp cycle exercise: influence of aerobic fitness status

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

During ramp exercise the deoxy[Hb + Mb] pattern follows a sigmoid model [f(x) = f 0 + A/(1 + exp−(−c + dx))], indicating a non-linear muscle blood flow \( (\dot{Q}{\text{m}})/{\text{oxygen}}\;{\text{uptake}}\;(\dot{V}{\text{O}}_{{2{\text{m}}}} ) \)-relationship. We hypothesised that in trained cyclists the sigmoid would display a rightward shift, due to an increased oxidative capacity and/or higher percentage of slow-twitch fibres. A total of 10 cyclists and 11 physically active students (PA students) performed a relative ramp exercise (±12 min) and a ramp25-exercise (25 W min−1). Deoxy[Hb + Mb] was measured at the M. Vastus Lateralis by NIRS, normalized to the total amplitude of the response and expressed as a function of absolute and relative (%peakP) work rate. The work rate corresponding to c/d (i.e.50% of the amplitude of the deoxy[Hb + Mb] response) was the only parameter of the sigmoid that differed significantly between cyclists (57.9 ± 4.4% and 60.1 ± 4.1%peakP in the relative and ramp25, respectively) and PAstudents (49.6 ± 4.2% and 48.2 ± 5.1%peakP, respectively), indicating a rightward shift of the sigmoid in the cyclists. These results suggest a change in the time course of C(av)O2 as a function of aerobic fitness status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Armstrong RB, Laughlin MH (1984) Exercise blood flow pattern within and among rat muscles after training. Am J Physiol 246:H59–H68

    PubMed  CAS  Google Scholar 

  • Bauer TA, Reusch JE, Levi M, Regensteiner JG (2007) Skeletal muscle deoxygenation after the onset of moderate exercise suggests slowed microvascular blood flow kinetics in type 2 diabetes. Diabetes Care 30:2880–2885. doi:10.2337/dc07-0843

    Article  PubMed  Google Scholar 

  • Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60:2020–2027

    PubMed  CAS  Google Scholar 

  • Behnke BJ, McDonough P, Padilla DJ, Musch TI, Poole DC (2003) Oxygen exchange profile in rat muscle of contrasting fibre types. J Physiol 549:597–605. doi:10.1113/jphysiol.2002.035915

    Article  PubMed  CAS  Google Scholar 

  • Belardinelli R, Georgiou D, Barstow TJ (1995) Near-infrared spectroscopy and changes in skeletal muscle oxygenation during incremental exercise in chronic heart failure: a comparison with healthy subjects. G Ital Cardiol 25:715–724

    PubMed  CAS  Google Scholar 

  • Boone J, Koppo K, Bouckaert J (2008) The \( \dot{V}{\text{O}_{2}} \) response to submaximal ramp cycle exercise: influence of ramp slope and training status. Respir Physiol Neurobiol 161:291–297. doi:10.1016/j.resp.2008.03.008

  • Costill DL, Fink WJ, Pollock ML (1976) Muscle fibre composition and enzyme activities of elite distance runners. Med Sci Sports Exerc 8:96–100

    CAS  Google Scholar 

  • Delorey DS, Kowalchuk JM, Paterson DH (2003) Relationship between pulmonary O2 uptake kinetics and muscle deoxygenation during moderate-intensity exercise. J Appl Physiol 95:113–120

    PubMed  Google Scholar 

  • Delp MD, Armstrong RB (1988) Blood flow in normal and denervated muscle during exercise in conscious rats. Am J Physiol 255:H1509–H1515

    PubMed  CAS  Google Scholar 

  • Edgerton VR, Smith JL, Simpson DR (1975) Muscle fibre type populations of humans leg muscles. Histochem J 7:259–266. doi:10.1007/BF01003594

    Article  PubMed  CAS  Google Scholar 

  • Elder GCB (1977) The heterogeneity of fibre type populations in human muscle. Med Sci Sports Exerc 9:64–65. doi:10.1249/00005768-197721000-00090

    Google Scholar 

  • Faulkner JA, Heigenhauser GJ, Schork MA (1977) The cardiac output-oxygen uptake relationship of men during graded bicycle ergometry. Med Sci Sports Exerc 9:148–154

    CAS  Google Scholar 

  • Ferreira LF, Townsend DK, Lutjemeier BJ, Barstow TJ (2005) Muscle capillary blood flow kinetics estimated from pulmonary O2 uptake and near-infrared spectroscopy. J Appl Physiol 98:1820–1828. doi:10.1152/japplphysiol.00907.2004

    Article  PubMed  Google Scholar 

  • Ferreira LF, McDonough P, Behnke BJ, Musch TI, Poole DC (2006) Blood flow and O2 extraction as a function of O2 uptake in muscle composed of different fibre types. Respir Physiol Neurobiol 153:237–249. doi:10.1016/j.resp.2005.11.004

    Article  PubMed  Google Scholar 

  • Ferreira LF, Koga S, Barstow TJ (2007) Dynamics of noninvasively estimated microvascular O2 extraction during ramp exercise. J Appl Physiol 103:1999–2004. doi:10.1152/japplphysiol.01414.2006

    Article  PubMed  Google Scholar 

  • Folkow B, Halicka HD (1968) A comparison between ‘red’ and ‘white’muscle with respect to blood supply, capillary surface area and oxygen uptake during rest and movement. Microvasc Res 1:1–14. doi:10.1016/0026-2862(68)90002-2

    Article  Google Scholar 

  • Gollnick PD, Saltin B (1982) Significance of skeletal muscle oxidative enzyme enhancement with endurance training. Clin Physiol 2:1–12. doi:10.1111/j.1475-097X.1982.tb00001.x

    Article  PubMed  CAS  Google Scholar 

  • Grassi B, Pogliaghi S, Rampichini S, Quaresima V, Ferrari M, Marconi C, Ceretelli P (2003) Muscle oxygenation and pulmonary gas exchange kinetics during cycle exercise on-transitions in humans. J Appl Physiol 95:149–158

    PubMed  Google Scholar 

  • Harper AJ, Ferreira LF, Lutjemeier BJ, Townsend DK, Barstow TJ (2006) Human femoral artery and estimated muscle capillary blood flow kinetics following the onset of exercise. Exp Physiol 91:661–671. doi:10.1113/expphysiol.2005.032904

    Article  PubMed  Google Scholar 

  • Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of human fibre types in 36 human muscles. An autopsy study. J Neurol Sci 18:111–129. doi:10.1016/0022-510X(73)90023-3

    Article  PubMed  CAS  Google Scholar 

  • Kautz SA, Neptune RR (2002) Biomechanical determinants of pedalling energetics: internal and external work are not independent. Exerc Sport Sci Rev 30:159–165. doi:10.1097/00003677-200210000-00004

    Article  PubMed  Google Scholar 

  • Koga S, Poole DC, Ferreira LF, Whipp BJ, Kondo N, Saitoh T, Ohmae E, Barstow TJ (2008) Spatial heterogeneity of quadriceps muscle deoxygenation kinetics during cycle exercise. J Appl Physiol 103:2049–2056. doi:10.1152/japplphysiol.00627.2007

    Article  Google Scholar 

  • Kime R, Im J, Moser D, Lin Y, Nioka S, Katsumura T, Chance B (2005) Reduced heterogeneity of muscle deoxygenation during heavy bicycle exercise. Med Sci Sports Exerc 37:412–417. doi:10.1249/01.MSS.0000155401.81284.76

    Article  PubMed  Google Scholar 

  • Laughlin MH, Armstrong RB (1982) Muscular blood flow distribution pattern as a function of running speed in rats. Am J Physiol 243:H296–H306

    PubMed  CAS  Google Scholar 

  • Laughlin MH, Armstrong RB (1987) Adrenoreceptor effects on rat muscle blood flow during treadmill exercise. J Appl Physiol 62:1465–1472

    PubMed  CAS  Google Scholar 

  • Lexell J, Henriksson-Larsen K, Sjöstrom M (1983) Distribution of different fibre types in human skeletal muscle. 2. A study of cross-sections of whole m. vastus lateralis. Acta Physiol Scand 117:115–122

    Article  PubMed  CAS  Google Scholar 

  • Li YSW, Yuen CWM, Yueng KW, Sin KM (1999) Prediction of the best-fit regression model to correlate instrumental colour measurement and visual assessment. Colour Technol 115:22–31. doi:10.1111/j.1478-4408.1999.tb00346.x

    Article  CAS  Google Scholar 

  • Lutjemeier BJ, Miura A, Scheuermann BW, Koga S, Townsend DK, Barstow TJ (2005) Muscle contraction-blood flow interactions during upright knee extension exercise in humans. J Appl Physiol 98:1575–1583. doi:10.1152/japplphysiol.00219.2004

    Article  PubMed  Google Scholar 

  • McDonough P, Behnke BJ, Padilla DJ, Musch TI, Poole DC (2005) Control of microvascular oxygen pressures in rat muscles comprised of different fibre types. J Physiol 563:903–913. doi:10.1113/jphysiol.2004.079533

    Article  PubMed  CAS  Google Scholar 

  • McGuire DK, Levine BD, Williamson JW, Snell PG, Blomqvist CG, Saltin B, Mitchell JH (2001) A 30-year follow-up of the Dallas bedrest and training study. II. Effect of age on cardiovascular adaptation to exercise training. Circulation 104:1358–1366. doi:10.1161/hc3701.096099

    Article  PubMed  CAS  Google Scholar 

  • Mizuno M, Tokizawa K, Iwakawa T, Muaoka I (2004) Inflection points of cardiovascular responses and oxygenation are correlated in the distal but not the proximal portions of muscle during incremental exercise. J Appl Physiol 97:867–873. doi:10.1152/japplphysiol.00213.2004

    Article  PubMed  Google Scholar 

  • Poole DC, Sexton WL, Behnke BJ, Ferguson CS, Hageman KS, Musch TI (2000) Respiratory muscle blood flows during physiological and chemical hyperpnea in the rat. J Appl Physiol 88:186–194

    PubMed  CAS  Google Scholar 

  • Proctor DN, Miller JD, Dietz NM, Minson CT, Joyner MJ (2001) Reduced submaximal leg blood flow after high-intensity aerobic training. J Appl Physiol 91:2619–2627

    PubMed  CAS  Google Scholar 

  • Richardson RS, Poole DC, Knight DR, Kurdak SS, Hogan MC, Grassi B, Johnson EC, Kendrick KF, Erickson BK, Wagner PD (1993) High muscle blood flow in man: is maximal O2 extraction compromised? J Appl Physiol 75:1911–1916

    PubMed  CAS  Google Scholar 

  • Saltin B, Blomqvist G, Mitchell JH, Johnson RL Jr, Wildenthal K, Chapman CB (1968) Response to exercise after bed rest and after training. Circulation 38:VII1–VII78

    PubMed  CAS  Google Scholar 

  • Sheriff DD, Hakeman AL (2001) Role of speed vs grade in relation to muscle pump function at locomotion onset. J Appl Physiol 91:269–276

    PubMed  CAS  Google Scholar 

  • Swanson GD, Hughson RL (1988) On the modelling and interpretation of oxygen uptake kinetics from ramp work rate tests. J Appl Physiol 65:2453–2458

    PubMed  CAS  Google Scholar 

  • Trappe S, Harber M, Creer A, Gallagher P, Slivka D, Minchev K, Whitsett D (2006) Single muscle fibre adaptations with marathon training. J Appl Physiol 101:721–727. doi:10.1152/japplphysiol.01595.2005

    Article  PubMed  Google Scholar 

  • Tschakovsky ME, Hughson RL (2003) Rapid blunting of sympathetic vasoconstriction in the human forearm at the onset of exercise. J Appl Physiol 94:1785–1792

    PubMed  CAS  Google Scholar 

  • Van Beekvelt MC, Borghuis MS, Van Engelen BG, Wevers RA, Colier WN (2001) Adipose tissue thickness affects in vivo quantitative near-infrared spectroscopy in human skeletal muscle. Clin Sci 101:21–28. doi:10.1042/CS20000247

    Article  PubMed  Google Scholar 

  • Warner HR, Cox A (1962) A mathematical model of heart rate control by sympathetic and vagus efferent information. J Appl Physiol 17:349–355

    PubMed  CAS  Google Scholar 

  • Woodman CR, Schrage WG, Rush JW, Ray CA, Price EM, Hasser EM, Laughlin MH (2001) Hindlimb unweighting decreases endothelium-dependent dilation and eNOS expression in soleus not gastrocnemius. J Appl Physiol 91:1091–1098

    PubMed  CAS  Google Scholar 

  • Wunsch SA, Muller-Delp J, Delp MD (2000) Time course of vasodilatory responses in skeletal muscle arterioles: role in hyperemia at onset of exercise. Am J Physiol Heart Circ Physiol 279:H1715–H1723

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Boone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boone, J., Koppo, K., Barstow, T.J. et al. Pattern of deoxy[Hb + Mb] during ramp cycle exercise: influence of aerobic fitness status. Eur J Appl Physiol 105, 851–859 (2009). https://doi.org/10.1007/s00421-008-0969-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0969-2

Keywords

Navigation