Skip to main content
Log in

Effect of low-dose endurance training on heart rate variability at rest and during an incremental maximal exercise test

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

We evaluated the effects of low-dose endurance training on autonomic HR control. We assessed the heart rate variability (HRV) of 11 untrained male subjects (36.8 ± 7.2 years) at rest and during an incremental maximal aerobic exercise test prior to a 7-week preparatory period and prior to and following a 14-week endurance training period, including a low to high intensity exercise session twice a week. Total (0.04–1.2 Hz), low (0.04–0.15 Hz) and high (0.15–1.2 Hz) frequency power of HRV were computed by short-time Fourier transform. The preparatory period induced no change in aerobic power or HRV. The endurance training period increased peak aerobic power by 12% (P < 0.001), decreased the HR (P < 0.01) and increased all HRV indices (P < 0.05–0.01) at absolute submaximal exercise intensities, but not at rest. In conclusion, low-dose endurance training enhanced vagal control during exercise, but did not alter resting vagal HR control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achten J, Jeukendrup AE (2003) Heart rate monitoring: applications and limitation. Sports Med 33:517–538. doi:10.2165/00007256-200333070-00004

    Article  PubMed  Google Scholar 

  • Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ (1981) Power spectrum analysis of heart rate fluctuations: a quantitative probe of beat-to-beat cardiovascular control. Science 213:220–222. doi:10.1126/science.6166045

    Article  PubMed  CAS  Google Scholar 

  • Aubert AE, Seps B, Beckers F (2003) Heart rate variability in athletes. Sports Med 33:889–919. doi:10.2165/00007256-200333120-00003

    Article  PubMed  Google Scholar 

  • Aunola S, Rusko H (1984) Reproducibility of aerobic and anaerobic thresholds in 20–50-year-old men. Eur J Appl Physiol 53:260–266. doi:10.1007/BF00776600

    Article  CAS  Google Scholar 

  • Bernardi L, Salvucci F, Suardi R, Solda PL, Calciati A, Perlini S et al (1990) Evidence for an intrinsic mechanism regulating heart rate variability in the transplanted and the intact heart during submaximal dynamic exercise? Cardiovasc Res 24:969–981. doi:10.1093/cvr/24.12.969

    Article  PubMed  CAS  Google Scholar 

  • Blomqvist CG, Saltin B (1983) Cardiovascular adaptations to physical training. Annu Rev Physiol 45:169–180. doi:10.1146/annurev.ph.45.030183.001125

    Article  PubMed  CAS  Google Scholar 

  • Bucksch J, Schlicht W (2006) Health enhancing physical activity and the prevention of chronic diseases—an epidemiological review. Soz Praventivmed 51:281–301. doi:10.1007/s00038-006-5043-4

    Article  PubMed  Google Scholar 

  • Carter JB, Banister EW, Blaber AP (2003) The effect of age and gender on heart rate variability after endurance training. Med Sci Sports Exerc 35:1333–1340. doi:10.1249/01.MSS.0000079046.01763.8F

    Article  PubMed  Google Scholar 

  • Christensen NJ, Galbo H (1983) Sympathetic nervous activity during exercise. Annu Rev Physiol 45:139–153. doi:10.1146/annurev.ph.45.030183.001035

    Article  PubMed  CAS  Google Scholar 

  • Cottin F, Leprêtre PM, Lopes P, Papelier Y, Médigue C, Billat V (2006) Assessment of ventilatory thresholds from heart rate variability in well-trained subjects during cycling. Int J Sports Med 27:959–967. doi:10.1055/s-2006-923849

    Article  PubMed  CAS  Google Scholar 

  • Durnin JVGA, Womersley J (1974) Body fat assessed from total body density and its estimation from skinfold thickness: measurements of 481 men and women aged from 16 to 72 years. Br J Nutr 32:77–97. doi:10.1079/BJN19740060

    Article  PubMed  CAS  Google Scholar 

  • Ekblom B, Killbom A, Soltysiak J (1973) Physical training, bradycardia, and autonomic nervous system. Scand J Clin Lab Invest 32:251–256. doi:10.3109/00365517309082468

    Article  PubMed  CAS  Google Scholar 

  • Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA et al (2007) Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc 39:1423–1434. doi:10.1249/mss.0b013e3180616b27

    Article  PubMed  Google Scholar 

  • Kaikkonen P, Nummela A, Rusko H (2007) Heart rate variability dynamics during early recovery after different endurance exercises. Eur J Appl Physiol 102:79–86. doi:10.1007/s00421-007-0559-8

    Article  PubMed  Google Scholar 

  • Katona PG, McLean M, Dighton DH, Guz A (1982) Sympathetic and parasympathetic cardiac control in athletes and nonathletes at rest. J Appl Physiol Respir Environ Exerc Physiol 52:1652–1657

    CAS  Google Scholar 

  • Leicht AS, Allen CD, Hoey AJ (2003a) Influence of age and moderate-intensity exercise training on heart rate variability in young and mature adults. Can J Appl Physiol 28(3):446–461

    PubMed  Google Scholar 

  • Leicht AS, Allen CD, Hoey AJ (2003b) Influence of intensive cycling training on heart rate variability during rest and exercise. Can J Appl Physiol 28:898–909

    PubMed  Google Scholar 

  • Lewis SF, Nylander E, Gad P, Areskog NH (1980) Non-autonomic component in bradycardia of endurance trained men at rest and during exercise. Acta Physiol Scand 109:297–305

    Article  PubMed  CAS  Google Scholar 

  • Loimaala A, Huikuri H, Oja P, Pasanen M, Vuori I (2000) Controlled 5-mo aerobic training improves heart rate but not heart rate variability or baroreflex sensitivity. J Appl Physiol 89:1825–1829

    PubMed  CAS  Google Scholar 

  • Martinmäki K, Rusko H (2008) Time-Frequency analysis of heart rate variability during immediate recovery from low and high intensity exercise. Eur J Appl Physiol 102:353–360. doi:10.1007/s00421-007-0594-5

    Article  PubMed  Google Scholar 

  • Martinmäki K, Rusko H, Kooistra L, Kettunen J, Saalasti S (2006a) Intraindividual validation of heart rate variability indexes to measure vagal effects on hearts. Am J Physiol Heart Circ Physiol 290:H640–H647. doi:10.1152/ajpheart.00054.2005

    Article  PubMed  CAS  Google Scholar 

  • Martinmäki K, Rusko H, Saalasti S, Kettunen J (2006b) Ability of short-time Fourier transform method to detect transient changes in vagal effects on hearts: a pharmacological blocking study. Am J Physiol Heart Circ Physiol 290:H2582–H2589. doi:10.1152/ajpheart.00058.2005

    Article  PubMed  CAS  Google Scholar 

  • Mourot L, Bouhaddi M, Perrey S, Rouillon JD, Regnard J (2004) Quantitative poincaré plot analysis of heart rate variability: effect of endurance training. Eur J Appl Physiol 91:79–87. doi:10.1007/s00421-003-0917-0

    Article  PubMed  Google Scholar 

  • Oppenheim A, Schafer RW (1999) Discrete-Time Signal Processing. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Pichon AP, de Bisschop C, Roulaud A, Papelier Y (2004) Spectral analysis of heart rate variability during exercise in trained subjects. Med Sci Sports Exerc 36:1702–1708. doi:10.1249/01.MSS.0000142403.93205.35

    Article  PubMed  Google Scholar 

  • Scheuer J, Tipton CM (1977) Cardiovascular adaptations to physical training. Annu Rev Physiol 39:221–251. doi:10.1146/annurev.ph.39.030177.001253

    Article  PubMed  CAS  Google Scholar 

  • Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability. Standard of measurement, physiological interpretation and clinical use. Circulation 93:1046–1065

    Google Scholar 

  • Taylor HL, Buskirk ER, Henschel HA (1955) Maximal oxygen intake as an objective measure of cardio-respiratory performance. J Appl Physiol 8:73–80

    PubMed  CAS  Google Scholar 

  • Tulppo MP, Mäkikallio TH, Seppänen T, Laukkanen RT, Huikuri HV (1998) Vagal modulation of heart rate during exercise: effects of age and physical fitness. Am J Physiol 274:H424–H429

    PubMed  CAS  Google Scholar 

  • Tulppo MP, Hautala AJ, Mäkikallio TH, Laukkanen RT, Nissilä S, Hughson RL et al (2003) Effects of aerobic training on heart rate dynamics in sedentary subjects. J Appl Physiol 95:364–372

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by grants from the Ministry of Education, Finland, TEKES-National Technology Agency of Finland, Emil Aaltonen’s Foundation, Finland and Finnish Cultural Foundation.

Conflict of interest statement

This study was partly funded by grants from Suunto Ltd., Finland, and Firstbeat Technologies Ltd., Finland. Heikki Rusko is currently a stockowner of Firstbeat Technologies Ltd., Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaisu Martinmäki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinmäki, K., Häkkinen, K., Mikkola, J. et al. Effect of low-dose endurance training on heart rate variability at rest and during an incremental maximal exercise test. Eur J Appl Physiol 104, 541–548 (2008). https://doi.org/10.1007/s00421-008-0804-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0804-9

Keywords

Navigation