Skip to main content
Log in

Altered tension cost in (TG(mREN-2)27) rats overexpressing the mouse renin gene

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The present study aimed to characterize cardiac hypertrophy induced by activation of the renin–angiotensin system in terms of functional alterations on the level of the contractile proteins, employing transgenic rats harboring the mouse renin gene (TGR(mREN2)27). Ca2+-dependent tension and myosin ATPase activity were measured in skinned fiber preparations obtained from TGR(mREN2)27 and from age-matched Sprague–Dawley rats (SPDR). Western blots for troponin I (TnI) and troponin T (TnT) were performed and the phosphorylation status of TnI were evaluated in myocardial preparations. TnT and myosin heavy chain (MHC) isoforms were analyzed by RT-PCR. The pCa/tension relationship was shifted to the right in TGR(mREN2)27 compared to SPDR as indicated by increased Ca2+-concentrations required for half maximal activation of tension (SPDR 5.80, 95% confidence limits 5.77–5.82 vs. TGR(mREN2)27 5.69, 95% confidence limits 5.67–5.72, pCa units), while maximal developed tension was unaltered. Even more pronounced was the shift in the relationship between pCa and myosin–ATPase (SPDR 6.01, 95% confidence limits 5.99–6.03 vs. TGR(mREN2)27 5.77, 95% confidence limits 5.73–5.79, pCa units). The maximal myosin–ATPase activity was reduced in TGR(mREN2)27 compared to SPDR, respectively (211.0 ± 28.77 μmol ADP/s vs. 271.6 ± 43.66 μmol ADP/s, P < 0.05). Tension cost (ATPase activity/tension) was significantly reduced in TGR(mREN2)27. The β-MHC expression was significantly increased in TGR(mREN2)27. There was no isoform shift for TnT (protein and mRNA), as well as TnI, and no alteration of the phosphorylation of TnI in TGR(mREN2)27 compared to SPRD. The present study demonstrates that cardiac hypertrophy, induced by an activation of the renin–angiotensin system, leads to adapting alterations on the level of the contractile filaments, which reduce tension cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akella AB, Ding XL, Cheng R, Gulati J (1995) Diminished Ca2+ sensitivity of skinned cardiac muscle contractility coincident with troponin T-band shifts in the diabetic rat. Circ Res 76:600–606

    PubMed  CAS  Google Scholar 

  • Alpert NR, Mulieri LA (1982) Increased myothermal economy of isometric force generation in compensated cardiac hypertrophy induced by pulmonary artery constriction in the rabbit. A characterization of heat liberation in normal and hypertrophied right ventricular papillary muscles. Circ Res 50:491–500

    PubMed  CAS  Google Scholar 

  • Bartel S, Morano I, Hunger HD, Katus H, Pask HT, Karczewski P, Krause EG (1994) Cardiac troponin I and tension generation of skinned fibres in the developing rat heart. J Mol Cell Cardiol 26:1123–1131

    Article  PubMed  CAS  Google Scholar 

  • Bartel S, Karczewski P, Morano I, Krause EG (1995) Function of C-protein and troponin I phosphorylation in the heart. Ann N Y Acad Sci 752:243–245

    Article  PubMed  CAS  Google Scholar 

  • Bohlender J, Menard J, Edling O, Ganten D, Luft FC (1998) Mouse and rat plasma renin concentration and gene expression in (mRen2)27 transgenic rats. Am J Physiol 274:H1450–H1456

    PubMed  CAS  Google Scholar 

  • Brixius K, Savidou-Zaroti P, Bloch W, Schwinger RH (2003) Reduced length-dependent cross-bridge recruitment in skinned fiber preparations of human failing myocardium. Eur J Appl Physiol 89:249–256

    PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Cooper TA, Ordahl CP (1985) A single cardiac troponin T gene generates embryonic and adult isoforms via developmentally regulated alternate splicing. J Biol Chem 260:11140–11148

    PubMed  CAS  Google Scholar 

  • Cumming DV, Seymour AM, Rix LK, Kellett R, Dhoot GK, Yacoub MH, Barton PJ (1995) Troponin I and T protein expression in experimental cardiac hypertrophy. Cardioscience 6:65–70

    PubMed  CAS  Google Scholar 

  • Danzi S, Klein I (2005) Posttranscriptional regulation of myosin heavy chain expression in the heart by triiodothyronine. Am J Physiol Heart Circ Physiol 288:H455–H460

    Article  PubMed  CAS  Google Scholar 

  • Fabiato A, Fabiato F (1979) Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol Paris 75:463–505

    PubMed  CAS  Google Scholar 

  • Flesch M, Schiffer F, Zolk O, Pinto Y, Rosenkranz S, Hirth-Dietrich C, Arnold G, Paul M, Bohm M (1997) Contractile systolic and diastolic dysfunction in renin-induced hypertensive cardiomyopathy. Hypertension 30:383–391

    PubMed  CAS  Google Scholar 

  • Grossman W, Jones D, McLaurin LP (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56:56–64

    PubMed  CAS  Google Scholar 

  • Guth K, Wojciechowski R (1986) Perfusion cuvette for the simultaneous measurement of mechanical, optical and energetic parameters of skinned muscle fibres. Pflugers Arch 407:552–557

    Article  PubMed  CAS  Google Scholar 

  • Hajjar RJ, Gwathmey JK (1992) Cross-bridge dynamics in human ventricular myocardium. Regulation of contractility in the failing heart [published erratum appears in Circulation 1994 Jan;89(1):509]. Circulation 86:1819–1826

    PubMed  CAS  Google Scholar 

  • Holubarsch C, Goulette RP, Litten RZ, Martin BJ, Mulieri LA, Alpert NR (1985) The economy of isometric force development, myosin isoenzyme pattern and myofibrillar ATPase activity in normal and hypothyroid rat myocardium. Circ Res 56:78–86

    PubMed  CAS  Google Scholar 

  • Huxley AF (1957) Muscle structure and theories of contraction. Progr Biophys Chem 7:255–318

    CAS  Google Scholar 

  • Ji GJ, Fleischmann BK, Bloch W, Feelisch M, Andressen C, Addicks K, Hescheler J (1999) Regulation of the L-type Ca2+ channel during cardiomyogenesis: switch from NO to adenylyl cyclase-mediated inhibition. FASEB J 13:313–324

    PubMed  CAS  Google Scholar 

  • Kameyama T, Chen Z, Bell SP, VanBuren P, Maughan D, LeWinter MM (1998) Mechanoenergetic alterations during the transition from cardiac hypertrophy to failure in Dahl salt-sensitive rats. Circulation 98:2919–2929

    PubMed  CAS  Google Scholar 

  • Karczewski P, Bartel S, Krause EG (1990) Differential sensitivity to isoprenaline of troponin I and phospholamban phosphorylation in isolated rat hearts. Biochem J 266:115–122

    PubMed  CAS  Google Scholar 

  • Khairallah PA, Kanabus J (1983) Angiotensin and myocardial protein synthesis. VIII:337–347

  • Kim S, Ohta K, Hamaguchi A, Yukimura T, Miura K, Iwao H (1995) Angiotensin II induces cardiac phenotypic modulation and remodeling in vivo in rats. Hypertension 25:1252–1259

    PubMed  CAS  Google Scholar 

  • Kim SH, Kim HS, Lee MM (2002) Re-expression of fetal troponin isoforms in the postinfarction failing heart of the rat. Circ J 66:959–964

    Article  PubMed  CAS  Google Scholar 

  • Lecarpentier Y, Bugaisky LB, Chemla D, Mercadier JJ, Schwartz K, Whalen RG, Martin JL (1987) Coordinated changes in contractility, energetics, and isomyosins after aortic stenosis. Am J Physiol 252:H275–282

    PubMed  CAS  Google Scholar 

  • Li P, Hofmann PA, Li B, Malhotra A, Cheng W, Sonnenblick EH, Meggs LG, Anversa P (1997) Myocardial infarction alters myofilament calcium sensitivity and mechanical behavior of myocytes. Am J Physiol 272:H360–H370

    PubMed  CAS  Google Scholar 

  • Lompre AM, Schwartz K, d’Albis A, Lacombe G, Van Thiem N, Swynghedauw B (1979) Myosin isoenzyme redistribution in chronic heart overload. Nature 282:105–107

    Article  PubMed  CAS  Google Scholar 

  • Loxdale HD (1976) A method for the continuous assay of picomole quantities of ADP released from glycerol-extracted skeletal muscle fibres on MgATP activation [proceedings]. J Physiol (Lond) 260:4P–5P

    CAS  Google Scholar 

  • Martin AF, Ball K, Gao LZ, Kumar P, Solaro RJ (1991) Identification and functional significance of troponin I isoforms in neonatal rat heart myofibrils. Circ Res 69:1244–1252

    PubMed  CAS  Google Scholar 

  • Mercadier JJ, Bouveret P, Gorza L, Schiaffino S, Clark WA, Zak R, Swynghedauw B, Schwartz K (1983) Myosin isoenzymes in normal and hypertrophied human ventricular myocardium. Circ Res 53:52–62

    PubMed  CAS  Google Scholar 

  • Metzger JM, Wahr PA, Michele DE, Albayya F, Westfall MV (1999) Effects of myosin heavy chain isoform switching on Ca2+- activated tension development in single adult cardiac myocytes. Circ Res 84:1310–1317

    PubMed  CAS  Google Scholar 

  • Mope L, McClellan GB, Winegrad S (1980) Calcium sensitivity of the contractile system and phosphorylation of troponin in hyperpermeable cardiac cells. J Gen Physiol 75:271–282

    Article  PubMed  CAS  Google Scholar 

  • Morano I, Arndt H, Gartner C, Ruegg JC (1988) Skinned fibers of human atrium and ventricle: myosin isoenzymes and contractility. Circ Res 62:632–639

    PubMed  CAS  Google Scholar 

  • Morano I, Rosch J, Arner A, Ruegg JC (1990) Phosphorylation and thiophosphorylation by myosin light chain kinase: different effects on mechanical properties of chemically skinned ventricular fibers from the pig. J Mol Cell Cardiol 22:805–813

    Article  PubMed  CAS  Google Scholar 

  • Morano I, Adler K, Weismann K, Knorr A, Erdmann E, Bohm M (1993) Correlation of myosin heavy chain expression in the rat with cAMP in different models of hypertension-induced cardiac hypertrophy. J Mol Cell Cardiol 25:387–394

    Article  PubMed  CAS  Google Scholar 

  • Mullins JJ, Peters J, Ganten D (1990) Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature 344:541–544

    Article  PubMed  CAS  Google Scholar 

  • Munch G, Bolck B, Sugaru A, Brixius K, Bloch W, Schwinger RH (2001) Increased expression of isoform 1 of the sarcoplasmic reticulum Ca(2+)-release channel in failing human heart. Circulation 103:2739–2744

    PubMed  CAS  Google Scholar 

  • Nakao K, Minobe W, Roden R, Bristow MR, Leinwand LA (1997) Myosin heavy chain gene expression in human heart failure. J Clin Invest 100:2362–2370

    Article  PubMed  CAS  Google Scholar 

  • Nassar R, Malouf NN, Kelly MB, Oakeley AE, Anderson PA (1991) Force-pCa relation and troponin T isoforms of rabbit myocardium. Circ Res 69:1470–1475

    PubMed  CAS  Google Scholar 

  • Ohta K, Kim S, Wanibuchi H, Ganten D, Iwao H (1996) Contribution of local renin-angiotensin system to cardiac hypertrophy, phenotypic modulation, and remodeling in TGR(mREN2)27 transgenic rats. Circulation 94:785–791

    PubMed  CAS  Google Scholar 

  • Ojamaa K, Petrie JF, Balkman C, Hong C, Klein I (1994) Posttranscriptional modification of myosin heavy-chain gene expression in the hypertrophied rat myocardium. Proc Natl Acad Sci USA 91:3468–3472

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer JM, Pfeffer MA, Braunwald E (1985) Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res 57:84–95

    PubMed  CAS  Google Scholar 

  • Rajamanickam C, Selvamurugan N, Arun S, Siddiqui MA (1992) Effect of cytosol on the regulation of expression of myosin heavy chain genes during cardiac hypertrophy. Cell Mol Biol 38:81–89

    PubMed  CAS  Google Scholar 

  • Robertson SP, Johnson JD, Holroyde MJ, Kranias EG, Potter JD, Solaro RJ (1982) The effect of troponin I phosphorylation on the Ca2+-binding properties of the Ca2+-regulatory site of bovine cardiac troponin. J Biol Chem 257:260–263

    PubMed  CAS  Google Scholar 

  • Rundell VL, Geenen DL, Buttrick PM, de Tombe PP (2004) Depressed cardiac tension cost in experimental diabetes is due to altered myosin heavy chain isoform expression. Am J Physiol Heart Circ Physiol 287:H408–H413

    Article  PubMed  CAS  Google Scholar 

  • Sasse S, Brand NJ, Kyprianou P, Dhoot GK, Wade R, Arai M, Periasamy M, Yacoub MH, Barton PJ (1993) Troponin I gene expression during human cardiac development and in end-stage heart failure. Circ Res 72:932–938

    PubMed  CAS  Google Scholar 

  • Schwartz K, Lecarpentier Y, Martin JL, Lompre AM, Mercadier JJ, Swynghedauw B (1981) Myosin isoenzymic distribution correlates with speed of myocardial contraction. J Mol Cell Cardiol 13:1071–1075

    Article  PubMed  CAS  Google Scholar 

  • Schwinger RH, Bohm M, Koch A, Schmidt U, Morano I, Eissner HJ, Uberfuhr P, Reichart B, Erdmann E (1994) The failing human heart is unable to use the Frank-Starling mechanism. Circ Res 74:959–969

    PubMed  CAS  Google Scholar 

  • Schwinger RH, Bohm M, Schmidt U, Karczewski P, Bavendiek U, Flesch M, Krause EG, Erdmann E (1995) Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca(2+)-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation 92:3220–3228

    PubMed  CAS  Google Scholar 

  • Solaro RJ, Eyk Van EJ (1996) Altered interactions among thin filament proteins modulate cardiac function [see comments]. J Mol Cell Cardiol 28:217–230

    Article  PubMed  CAS  Google Scholar 

  • Tobacman LS, Lee R (1987) Isolation and functional comparison of bovine cardiac troponin T isoforms. J Biol Chem 262:4059–4064

    PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • van der Velden J, Moorman AF, Stienen GJ (1998) Age-dependent changes in myosin composition correlate with enhanced economy of contraction in guinea-pig hearts. J Physiol (Lond) 507:497–510

    Article  Google Scholar 

  • Weir MR, Dzau VJ (1999) The renin-angiotensin-aldosterone system: a specific target for hypertension management. Am J Hypertens 12:205S–213S

    Article  PubMed  CAS  Google Scholar 

  • Zobel C, Brixius K, Frank K, Schwinger RH (1998a) Effect of the Na+-channel modulator BDF 9148 on Ca2+-sensitivity and force of contraction of hypertrophic myocardium from transgene rats harboring the mouse Renin gene (TG(mREN2)27) [In Process Citation]. Naunyn Schmiedebergs Arch Pharmacol 357:532–539

    Article  CAS  Google Scholar 

  • Zobel C, Brixius K, Pietsch M, Munch G, Bolck B, Schwinger RH (1998b) Unchanged sarcoplasmic reticulum Ca2+-ATPase activity, reduced Ca2+ sensitivity, and negative force-frequency relationship in transgenic rats overexpressing the mouse renin gene [In Process Citation]. J Mol Med 76:533–544

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the Else-Kröner-Fresenius-Stiftung as well as by the Deutsche Forschungsgemeinschaft DFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Zobel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zobel, C., Zavidou-Saroti, P., Bölck, B. et al. Altered tension cost in (TG(mREN-2)27) rats overexpressing the mouse renin gene. Eur J Appl Physiol 99, 121–132 (2007). https://doi.org/10.1007/s00421-006-0323-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-006-0323-5

Keywords

Navigation