Skip to main content
Log in

Renal impairment caused by chronic occupational chromate exposure

  • Original Article
  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

Abstract

Purpose

To determine the nephritic toxicity of chromate after chronic occupational exposure.

Methods

The environmental contamination was assessed by measuring the chromium (Cr) in 8-h airborne sampler. The integrated level of Cr was determined by Cr concentrations in the whole blood (WB-Cr) and the urine (U-Cr). The renal glomerular and tubule impairment was evaluated by determination of cystatin C (Cys-C) in the serum and microalbumin (mALB), urinary beta2-microglobulin (β2M), N-acetyl-beta-d-glucosaminidase (NAG) activity in the urine.

Results

The mean occupational exposure time to Cr was 12.86 years with average daily air level of 27.13 μg/m3 comparing to 0.11 μg/m3 of the background level. The WB-Cr and U-Cr were 23.49 μg/L and 17.41 μg/g creatinine (Cre), respectively in the chromate-exposed workers comparing to 3.32 μg/L and 1.52 μg/g Cre in the controls. The serum Cys-C and urinary mALB were significantly increased in the chromate-exposed workers. Exposure to Cr seems to induce an enhanced level of urinary NAG activity and β2M concentration. The increased serum Cys-C concentration was positively correlated with the level of serum Cre. The U-Cr was positively correlated to the concentrations of urinary mALB, β2M, and the activity of NAG.

Conclusions

Chronic occupational exposure to chromate causes comprehensive renal impairment though more severity could occur in the tubule than in the glomeruler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agras PI, Derbent M, Ozcay F, Baskin E, Turkoglu S, Aldemir D, Tokel K, Saatci U (2005) Effect of congenital heart disease on renal function in childhood. Nephron Physiol 99:10–15

    Article  Google Scholar 

  • Appenroth D, Bräunlich H (1988) Age dependent differences in sodium dichromate nephrotoxicity in rats. Exp Pathol 33:179–185

    CAS  Google Scholar 

  • Assadi FK (2005) Value of urinary excretion of microalbumin in predicting glomerular lesions in children with isolated microscopic hematuria. Pediatr Nephrol 20:1131–1135

    Article  Google Scholar 

  • Awad H, el-Safty I, Abdel-Gawad M, el-Said S (2003) Glomerular and tubular dysfunction in children with congenital cyanotic heart disease: effect of palliative surgery. Am J Med Sci 325:110–114

    Article  Google Scholar 

  • Bagchi D, Stohs SJ, Downs BW, Bagchi M, Preuss HG (2002) Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology 180:5–22

    Article  CAS  Google Scholar 

  • Berndt WO (1976) Renal chromium accumulation and its relationship to chromium-induced nephrotoxicity. J Toxicol Environ Health 1:449–459

    Article  CAS  Google Scholar 

  • Birmingham DJ, Rovin BH, Shidham G, Bissell M, Nagaraja HN, Hebert LA (2008) Relationship between albuminuria and total proteinuria in systemic lupus erythematosus nephritis: diagnostic and therapeutic implications. Clin J Am Soc Nephrol 3:1028–1033

    Article  Google Scholar 

  • Bonde JP, Vittinghus E (1996) Urinary excretion of proteins among metal welders. Hum Exp Toxicol 15:1–4

    Article  CAS  Google Scholar 

  • Brzóska MM, Kamiński M, Supernak-Bobko D, Zwierz K, Moniuszko-Jakoniuk J (2003) Changes in the structure and function of the kidney of rats chronically exposed to cadmium. I. Biochemical and histopathological studies. Arch Toxicol 77:344–352

    Google Scholar 

  • Costa M, Klein CB (2006) Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol 36:155–163

    Article  CAS  Google Scholar 

  • De Mattia G, Bravi MC, Laurenti O, De Luca O, Palmeri A, Sabatucci A, Mendico G, Ghiselli A (2004) Impairment of cell and plasma redox state in subjects professionally exposed to chromium. Am J Ind Med 46:120–125

    Article  Google Scholar 

  • Evan AP, Dail WG Jr (1974) The effects of sodium chromate on the proximal tubules of the rat kidney. Fine structural damage and lysozymuria. Lab Invest 30:704–715

    CAS  Google Scholar 

  • Foa V, Riboldi L, Patroni M, Zocchetti C, Sbrana C, Mutti A (1988) Effects derived from long-term low-level chromium exposure in ferro-alloy metallurgy. Study of absorption and renal function in workers. Sci Total Environ 71:389–400

    Article  CAS  Google Scholar 

  • Franchini I, Mutti A (1988) Selected toxicological aspects of chromium (VI) compounds. Sci Total Environ 71:379–387

    Article  CAS  Google Scholar 

  • Franchini I, Mutti A, Cavatorta A, Corradi A, Cosi A, Olivetti G, Borghetti A (1978) Nephrotoxicity of chromium. Remarks on an experimental and epidemiological investigation. Contrib Nephrol 10:98–110

    CAS  Google Scholar 

  • Gao M, Levy LS, Faux SP, Aw TC, Braithwaite RA, Brown SS (1994) Use of molecular epidemiological techniques in a pilot study on workers exposed to chromium. Occup Environ Med 51:663–668

    Article  CAS  Google Scholar 

  • Holmes AL, Wise SS, Wise JP Sr (2008) Carcinogenicity of hexavalent chromium. Indian J Med Res 128:353–372

    CAS  Google Scholar 

  • Kazama JJ, Kutsuwada K, Ataka K, Maruyama H, Gejyo F (2002) Serum cystatin C reliably detects renal dysfunction in patients with various renal diseases. Nephron 91:13–20

    Article  CAS  Google Scholar 

  • Kim E, Na KJ (1991) Nephrotoxicity of sodium dichromate depending on the route of administration. Arch Toxicol 65:537–541

    Article  CAS  Google Scholar 

  • Kirschbaum BB, Sprinkel FM, Oken DE (1981) Proximal tubule brush border alterations during the course of chromate nephropathy. Toxicol Appl Pharmacol 58:19–30

    Article  CAS  Google Scholar 

  • Lindberg E, Vesterberg O (1983a) Urinary excretion of proteins in chromeplaters, exchromeplaters and referents. Scand J Work Environ Health 9:505–510

    CAS  Google Scholar 

  • Lindberg E, Vesterberg O (1983b) Monitoring exposure to chromic acid in chromeplating by measuring chromium in urine. Scand J Work Environ Health 9:333–340

    CAS  Google Scholar 

  • Lindberg E, Vesterberg O (1989) Urinary excretion of chromium in chromeplaters after discontinued exposure. Am J Ind Med 16:485–492

    CAS  Google Scholar 

  • Littorin M, Welinder H, Hultberg B (1984) Kidney functions in stainless steel welders. Int Arch Occup Environ Health 53:279–282

    Article  CAS  Google Scholar 

  • Liu KJ, Shi X (2001) In vivo reduction of chromium (VI) and its related free radical generation. Mol Cell Biochem 222:41–47

    Article  CAS  Google Scholar 

  • Liu CS, Kuo HW, Lai JS, Lin TI (1998) Urinary N-acetyl-beta-glucosaminidase as an indicator of renal dysfunction in electroplating workers. Int Arch Occup Environ Health 71:348–352

    Article  CAS  Google Scholar 

  • Mandiwana KL, Panichev N, Resane T (2006) Electrothermal atomic absorption spectrometric determination of total and hexavalent chromium in atmospheric aerosols. J Hazard Mater 36:379–382

    Article  Google Scholar 

  • McAughey JJ, Samuel AM, Baxter PJ, Smith NJ (1988) Biological monitoring of occupational exposure in the chromate pigment production industry. Sci Total Environ 71:317–322

    Article  CAS  Google Scholar 

  • Mojiminiyi OA, Abdella N, George S (2000) Evaluation of serum cystatin C and chromogranin A as markers of nephropathy in patients with type 2 diabetes mellitus. Scand J Clin Lab Invest 60:483–489

    Article  CAS  Google Scholar 

  • Mutti A, Lucertini S, Valcavi P, Neri TM, Fornari M, Alinovi R, Franchini I (1985) Urinary excretion of brush-border antigen revealed by monoclonal antibody: early indicator of toxic nephropathy. Lancet 26:914–917

    Article  Google Scholar 

  • Nagaya T, Ishikawa N, Hata H, Takahashi A, Yoshida I, Okamoto Y (1994) Early renal effects of occupational exposure to low-level hexavalent chromium. Arch Toxicol 68:322–324

    Article  CAS  Google Scholar 

  • Newman DJ, Thakkar H, Edwards RG, Wilkie M, White T, Grubb AO, Price CP (1995) Serum cystatin C measured by automated immunoassay: a more sensitive marker of changes in GFR than serum creatinine. Kidney Int 47:312–318

    Article  CAS  Google Scholar 

  • Ortiz F, Harmoinen A, Paavonen T, Koskinen P, Grönhagen-Riska C, Honkanen E (2008) Is Cystatin C more sensitive than creatinine in detecting early chronic allograft nephropathy? Clin Nephrol 70:18–25

    CAS  Google Scholar 

  • Ozer BA, Dursun B, Baykal A, Gultekin M, Suleymanlar G (2005) Can cystatin C be a better marker for the early detection of renal damage in primary hypertensive patients? Ren Fail 27:247–253

    CAS  Google Scholar 

  • Pedersen RS, Mørch PT (1978) Chromic acid poisoning treated with acute hemodialysis. Nephron 22:592–595

    Article  CAS  Google Scholar 

  • Royle H (1975) Toxicity of chromic acid in the chromium plating industry (1). Environ Res 10:39–53

    Article  CAS  Google Scholar 

  • Sarmiento-González A, Marchante-Gayón JM, Tejerina-Lobo JM, Paz-Jiménez J, Sanz-Medel A (2008) High-resolution ICP-MS determination of Ti, V, Cr, Co, Ni, and Mo in human blood and urine of patients implanted with a hip or knee prosthesis. Anal Bioanal Chem 391:2583–2589

    Article  Google Scholar 

  • Sjögren B, Hedström L, Ulfvarson U (1983) Urine chromium as an estimator of air exposure to stainless steel welding fumes. Int Arch Occup Environ Health 51:347–354

    Article  Google Scholar 

  • Stout MD, Herbert RA, Kissling GE, Collins BJ, Travlos GS, Witt KL, Melnick RL, Abdo KM, Malarkey DE, Hooth MJ (2009) Hexavalent chromium is carcinogenic to F344/N rats and B6C3F1 mice after chronic oral exposure. Environ Health Perspect 117:716–722

    CAS  Google Scholar 

  • Thomas LD, Hodgson S, Nieuwenhuijsen M, Jarup L (2009) Early kidney damage in a population exposed to cadmium and other heavy metals. Environ Health Perspect 117:181–184

    CAS  Google Scholar 

  • Tola S, Kilpiö J, Virtamo M, Haapa K (1977) Urinary chromium as an indicator of the exposure of welders to chromium. Scand J Work Environ Health 3:192–202

    CAS  Google Scholar 

  • Uzun H, Ozmen Keles M, Ataman R, Aydin S, Kalender B, Uslu E, Simsek G, Halac M, Kaya S (2005) Serum cystatin C level as a potentially good marker for impaired kidney function. Clin Biochem 38:792–798

    Article  CAS  Google Scholar 

  • Verschoor MA, Bragt PC, Herber RF, Zielhuis RL, Zwennis WC (1988) Renal function of chrome-plating workers and welders. Int Arch Occup Environ Health 60:67–70

    Article  CAS  Google Scholar 

  • Vyskocil A, Smejkalova J, Tejral J, Emminger S, Vincentova M, Ettlerova E, Lauwerys R, Bernard A (1992) Lack of renal changes in stainless steel welders exposed to chromium and nickel. Scand J Work Environ Health 18:252–256

    CAS  Google Scholar 

  • Vyskocil A, Viau C, Cízková M, Truchon G (1993) Kidney function in male and female rats chronically exposed to potassium dichromate. J Appl Toxicol 13:375–376

    Article  CAS  Google Scholar 

  • Wang X, Qin Q, Xu X, Xu J, Wang J, Zhou J, Huang S, Zhai W, Zhou H, Chen J (1994) Chromium-induced early changes in renal function among ferrochromium-producing workers. Toxicology 90:93–101

    Article  CAS  Google Scholar 

  • Wang AH, Zhu SM, Qiu YL, Zhu R, Qu YB, Li YL, Brandt-Rauf PW, Xia ZL (2008a) CYP2E1 mRNA expression, genetic polymorphisms in peripheral blood lymphocytes and liver abnormalities in Chinese VCM-exposed workers. Int J Occup Med Environ Health 21:141–146

    Article  CAS  Google Scholar 

  • Wang J, Sim AS, Wang XL, Salonikas C, Moriatis M, Naidoo D, Wilcken DE (2008b) Relations between markers of renal function, coronary risk factors and the occurrence and severity of coronary artery disease. Atherosclerosis 197:853–859

    Article  CAS  Google Scholar 

  • Wang HJ, Du XM, Wang M, Wang TC, Ou-Yang H, Wang B, Zhu MT, Wang Y, Jia G, Feng WY (2010) Using ion-pair reversed-phase HPLC ICP-MS to simultaneously determine Cr(III) and Cr(VI) in urine of chromate workers. Talanta 81:1856–1860

    Article  CAS  Google Scholar 

  • Wedeen RP, Qian LF (1991) Chromium-induced kidney disease. Environ Health Perspect 92:71–74

    Article  CAS  Google Scholar 

  • Wedeen RP, Haque S, Udasin I, D’Haese PC, Elseviers M, De Broe ME (1996) Absence of tubular proteinuria following environmental exposure to chromium. Arch Environ Health 51:321–323

    Article  CAS  Google Scholar 

  • Wedeen RP, Udasin I, Fiedler N, D’Haese P, De Broe M, Gelpi E et al (1999) Urinary biomarkers as indicators of renal disease. Ren Fail 21:241–249

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants of National Natural Science Foundation of China (Project No. 30571550) and the National Science and Technical Supporting Program of China (Project No. 2006BAI06B02 and Project 200902006). The authors wish to thank Drs. Aiguo Wu and Yuxin Zheng for critical review of the manuscript.

Competing interest declaration

The authors declare they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T., Jia, G., Zhang, J. et al. Renal impairment caused by chronic occupational chromate exposure. Int Arch Occup Environ Health 84, 393–401 (2011). https://doi.org/10.1007/s00420-010-0569-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00420-010-0569-4

Keywords

Navigation