Skip to main content
Log in

Numerical study of heat transfer performance of MHD Al2O3-Cu/water hybrid nanofluid flow over inclined surface

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, magnetohydrodynamic hybrid nanofluid is considered to study the heat transfer performance due to stretching of inclined surface. The stretching surface is considered under the effects of magnetic field along the normal direction. The surface is inclined such that it makes an angle of \({45}^{0}\) with \(x-axis\). The working nanofluid is composed of water and fraction of \({\mathrm{Al}}_{2}{\mathrm{O}}_{3}\) and \(\mathrm{Cu}\) nanoparticles. The flow is generated due to stretching of surface with constant velocity. Set of nonlinear partial differential equations, including continuity, momentum and energy equations, governs the flow and heat transfer. Similarity transformation technique is applied to convert them to nondimensional form. Transformation gives rise to number of physical parameters, such as Eckert number, suction parameter, convective parameter, and magnetic parameter. The numerical solution is sought using Picard Chelyshkov polynomial method, to evaluate the flow and heat transfer phenomenon against the range of emerging physical parameter. The study revealed that, in comparison with the simple \(\mathrm{Cu}\)/water nanofluid, heat transfer rate is augmented utilizing \({\mathrm{Al}}_{2}{\mathrm{O}}_{3}\)-\(\mathrm{Cu}\)/water hybrid nanofluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Masuda, H., Ebata, A., Teramae, K., Hishinuma, N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu. Bussei. 7, 227–233 (1993)

    Article  Google Scholar 

  2. Choi, S.U.S., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles. In: ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA (1995)

  3. Kwak, K., Kim, C.: Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Austral. Rheol. J. 17, 35–40 (2005)

    Google Scholar 

  4. Wong, K.V., Leon, O.D.: Applications of nanofluids: current and future. Adv. Mech. Eng. (2010). https://doi.org/10.1155/2010/519659

    Article  Google Scholar 

  5. Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., Thompson, L.J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)

    Article  Google Scholar 

  6. Das, S.K., Putra, N., Thiesen, P.H., Roetzel, W.: Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transf. 125, 567–574 (2003)

    Article  Google Scholar 

  7. Hamid, M., Usman, M., Zubair, T., Haq, R.U., Wang, W.: Shape effects of MoS2 nanoparticles on rotating flow of nanofluid along a stretching surface with variable thermal conductivity: a Galerkin approach. Int. J. Heat Mass Transf. 124, 706–714 (2018)

    Article  Google Scholar 

  8. Hayat, T., Rashid, M., Alsaedi, A.: MHD convective flow of magnetite-Fe 3 O 4 nanoparticles by curved stretching sheet. Res. Phys. 7, 3107–3115 (2017)

    Google Scholar 

  9. Haq, R.U., Rashid, I., Khan, Z.H.: Effects of aligned magnetic field and CNTs in two different base fluids over a moving slip surface. J. Mol. Liq. 243, 682–688 (2017)

    Article  Google Scholar 

  10. Hajmohammadi, M.R., Maleki, H., Lorenzini, G., Nourazar, S.S.: Effects of Cu and Ag nano-particles on flow and heat transfer from permeable surfaces. Adv. Powder Technol. 26, 193–199 (2015)

    Article  Google Scholar 

  11. Ashraf, M.U., Qasim, M., Wakif, A., Afridi, M.I., Animasuan, I.L.: A generalized differential quadrature algorithm for simulating magnetohydrodynamic peristaltic flow of blood-based nanofluid containing magnetite nanoparticles: a physiological application. Numer. Methods Part. Differ. Equ. 38, 666–692 (2022)

    MathSciNet  Google Scholar 

  12. Xia, W.-F., Animasaun, I.L., Wakif, A., Shah, N.A., Yook, S.-J.: Gear-generalized differential quadrature analysis of oscillatory convective Taylor-Coutte flows of second-grade fluids subject to Lorentz and Darcy-Forchheimer quadrature drag forces. Int. Commun. Heat Mass Transf. 126, 105395 (2021)

    Article  Google Scholar 

  13. Wakif, A., Zaydan, M., Alshomrani, A.S., Muhammad, R., Sehaqui, R.: New insights into the dynamics of alumina-(60% ethylene glycol+40% water) over an isothermal stretching sheet using a renovated Buongiorno’s approach: A numerical GDQLLM analysis. Int. Commun. Heat Mass Transf. 133, 105937 (2022)

    Article  Google Scholar 

  14. Khan, S.U., Alabdan, R., Al-Qawasmi, A.-R., Vakkar, A., Handa, M.B., Tlili, I.: Bioconvection application for double stratification 3-D flow of Burgers nanofluid over a bidirectional stretched surface: enhancing energy system performance. Case Stud. Therm. Eng. 26, 101073 (2021)

    Article  Google Scholar 

  15. Khan, S.U., Ali, H.M.: Swimming of gyrotactic microorganisms in unsteady flow of eyring powell nanofluid with variable thermal features: Some bio-technology applications. Int. J. Thermophys. 41, 159 (2020)

    Article  Google Scholar 

  16. Shamshuddin, M.D., Khan, S.U., Anwar Beg, O., Beg, T.A.: Hall current, viscous and joule heating effects on steady radiative 2-D magneto-power-law polymer dynamics from an exponentially stretching sheet with power-law slip velocity: A numerical study. Therm. Sci. Eng. Progress 20, 100732 (2020)

    Article  Google Scholar 

  17. Li, Y.-X., Khan, M.I., Punith Gowda, R.J., Ali, A., Farooq, S., Chu, Y.-M., Khan, S.U.: Dynamics of aluminum oxide and coper hybrid nanofluid in nonlinear mixed Marangoni convective flow with entropy generation: applications to renewable energy. Chin. J. Phys. 73, 275–287 (2021)

    Article  Google Scholar 

  18. Moldoveanu, G.M., Minea, A.A., Huminic, G., Huminic, A.: Al2O3/TiO2 hybrid nanofluids thermal conductivity an experimental approach. J. Therm. Anal. Calorim. 137, 583–592 (2019)

    Article  Google Scholar 

  19. Moldoveanu, G.M., Minea, A.A., Iacob, M., Ibanescu, C., Danu, M.: Experimental study on viscosity of stabilized Al2O3, Ti O2 nanofluids and their hybrid. Thermochim. Acta 659, 203–212 (2018)

    Article  Google Scholar 

  20. Moldoveanu, G.M., Huminic, G., Minea, A.A., Huminic, A.: Experimental study on thermal conductivity of stabilized Al2 O3 and SiO2 nanofluids and their hybrid. Int. J. Heat Mass Transf. 127, 450–457 (2018)

    Article  Google Scholar 

  21. Kannaiyan, S., Boobalan, C., Umasankaran, A., Ravirajan, A., Sathyan, S., Thomas, T.: Comparison of experimental and calculated thermophysical properties of alumina/cupric oxide hybrid nanofluids. J. Mol. Liq. 244, 469–477 (2017)

    Article  Google Scholar 

  22. Suresh, S., Venkitaraj, K.P., Selvakumar, P., Chandrasekar, M.: Synthesis of Al 2O3-Cu/water hybrid nanofluids using two step method and its thermophysical properties. Colloids Surf. A 388, 41–48 (2011)

    Article  Google Scholar 

  23. Huminic, G., Huminic, A.: Hybrid nanofluids for heat transfer applications—a state of-the-art review. Int. J. Heat Mass Transf. 125, 82–103 (2018)

    Article  Google Scholar 

  24. Sarkar, J., Ghosh, P., Adil, A.: A review on hybrid nano fluids: recent research, development and applications. Renew. Sustain. Energy Rev. 43, 164–177 (2015)

    Article  Google Scholar 

  25. Waini, I., Ishak, A., Pop, I.: Transpiration effects on hybrid nanofluid flow and heat transfer over a stretching/shrinking sheet with uniform shear flow. Alex. Eng. J. 59, 91–99 (2020)

    Article  Google Scholar 

  26. Kumar, K.A., Sandeep, N., Sugunamma, V., Animasaun, I.L.: Effect of irregular heat source/sink on the radiative thin film flow of MHD hybrid ferrofluid. J. Therm. Anal. Calorim. 139, 2145–21453 (2020)

    Article  Google Scholar 

  27. Waini, I., Ishak, A., Pop, I.: MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge. Appl. Math. Mech. 41, 507–520 (2020)

    Article  MathSciNet  Google Scholar 

  28. Tlili, I., Nabwey, H.A., Ashwinkumar, G.P., Sandeep, N.: AA7072-AA7075/methanol hybrid nanofluid flow above an uneven thickness surface with slip effect. Sci. Rep. 10, 4265 (2020)

    Article  Google Scholar 

  29. Aladdin, N.A.L., Bachok, N., Pop, I.: Cu-Al2O3/water hybrid nanofluid flow over a permeable moving surface in presence of hydromagnetic and suction effects. Alex. Eng. J. 59, 657–666 (2020)

    Article  Google Scholar 

  30. Hanif, H., Khan, I., Shafie, S.: Heat transfer exaggeration and entropy analysis in magneto-hybrid nanofluid flow over a vertical cone: a numerical study. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09256-z

    Article  Google Scholar 

  31. Waini, I., Ishak, A., Pop, I.: Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. Int. J. Heat Mass Transf. 136, 288–297 (2019)

    Article  Google Scholar 

  32. Rostami, M.N., Dinarvand, S., Pop, I.: Dual solutions for mixed convective stagnation-point flow of an aqueous silica-alumina hybrid nanofluid. Chin. J. Phys. 56, 2465–2478 (2018)

    Article  Google Scholar 

  33. Soomro, F.A., Haq, R.U., Khan, Z.H., Zhang, Q.: Numerical study of entropy generation in MHD water-based carbon nanotubes along an inclined permeable surface. Eur. Phys. J. Plus 132, 412 (2017)

    Article  Google Scholar 

  34. Usman, M., Hamid, M., Zubair, T., Haq, R.U., Wang, W.: hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via LSM. Int. J. Heat Mass Transf. 126, 1347–1356 (2018)

    Article  Google Scholar 

  35. Soomro, F.A., Haq, R.U., Khan, Z.H., Zhang, Q.: Passive control of nanoparticles due to convective heat transfer of Prandtl fluid model at the stretching surface. Chin. J. Phys. 55, 1561–1568 (2017)

    Article  Google Scholar 

  36. Soomro, F.A., Zaib, A., Haq, R.U., Sheikholeslami, M.: Dual nature solution of water functionalized copper nanoparticles along a permeable shrinking cylinder: FDM approach. Int. J. Heat Mass Transf. 129, 1242–1249 (2019)

    Article  Google Scholar 

  37. Hamid, M., Usman, M., Haq, R.U., Tian, Z.: A spectral approach to analyze the nonlinear oscillatory fractional-order differential equations. Chaos Solitons Fractals 146, 110921 (2021)

    Article  MathSciNet  Google Scholar 

  38. Hamid, M., Usman, M., Wang, W., Tian, Z.: Hybrid fully spectral linearized scheme for time-fractional evolutionary equations. Math. Methods Appl. Sci. 44, 3890–3912 (2021)

    Article  MathSciNet  Google Scholar 

  39. Hamid, M., Usman, M., Haq, R.U., Wang, W.: A Chelyshkov polynomial based algorithm to analyze the transport dynamics and anomalous diffusion in fractional model. Physica A 551, 124227 (2020)

    Article  MathSciNet  Google Scholar 

  40. Hamid, M., Usman, M., Haq, R.U., Tian, Z., Wang, W.: Linearized stable spectral method to analyze two-dimensional nonlinear evolutionary and reaction-diffusion models. Numer. Methods Partial Differ. Equ. 38, 243–261 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Princess Nourah bint Abdulrahman University through Researchers Supporting Project number (PNURSP2022R154), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feroz Ahmed Soomro or Shreen El-Sapa.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soomro, F.A., Usman, M., El-Sapa, S. et al. Numerical study of heat transfer performance of MHD Al2O3-Cu/water hybrid nanofluid flow over inclined surface. Arch Appl Mech 92, 2757–2765 (2022). https://doi.org/10.1007/s00419-022-02214-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02214-1

Keywords

Navigation