Skip to main content
Log in

Analysis of a cylindrically orthotropic disk using a regular perturbation method

  • Technical notes
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

We employ a regular perturbation method to construct approximate solutions for a class of boundary value problems in classical linear elasticity. A problem in this class consists of a cylindrically orthotropic disk in equilibrium with no body force and subjected to a prescribed radial displacement along its boundary. The problem has an exact solution that is singular at the centre of the disk. The singularity is dictated by the ratio between the tangential and the radial components of the elasticity tensor. The approximate solutions are given in terms of truncated power series of a small parameter \(\varepsilon \), which is equal to one minus the above ratio. In the particular case of an isotropic material, this ratio is one, yielding \(\varepsilon = 0\). The approximate solutions can be cast in a very concise form and tend to the exact solution as the number of terms in the truncated series increases, even for \(\varepsilon \) not small. On the other hand, convergence rates of these series depend strongly on \(\varepsilon \). Since the zeroth-order term, corresponding to \(\varepsilon = 0\), yields the solution of the disk problem for an isotropic material, we can study the stresses in a neighbourhood of the centre of the disk as if the disk was isotropic with an error of order \(\varepsilon \). For comparison purposes, we have also considered finite element approximations of the exact solutions obtained with uniform meshes. We have found that, differently from the perturbation method approximations, the finite element approximations are not very sensitive to changes in \(\varepsilon \). The approach presented in this work can be used to validate numerical solutions and to obtain insight on the solutions of complex problems that are not known in closed form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Notes

  1. Mathematica is a registered trademark of Wolfram Research Inc. \(\copyright \) 1988–2020.

References

  1. Aguiar, A.R.: Local and global injective solution of the rotationally symmetric sphere problem. J. Elast. 84, 99–129 (2006)

    Article  MathSciNet  Google Scholar 

  2. Aguiar, A.R., Rocha, L.A.: On the existence of rotationally symmetric solution of a constrained minimization problem of elasticity. J. Elast. 147, 1–32 (2021). https://doi.org/10.1007/s10659-021-09863-3

    Article  MathSciNet  MATH  Google Scholar 

  3. Arndt, D., Bangerth, W., Clevenger, T.C., Davydov, D., Fehling, M., Garcia-Sanchez, D., Harper, G., Heister, T., Heltai, L., Kronbichler, M., Maguire Kynch, R., Maier, M., Pelteret, J.P., Turcksin, B., Wells, D.: The deal II. Library, version 9.1. J. Numer. Math. 27(4), 203–213 (2019). https://doi.org/10.1515/jnma-2019-0064

  4. Avery, W.B., Herakovich, C.T.: Effect of fiber anisotropy on thermal stresses in fibrous composites. J. Appl. Mech. 53(4), 751–756 (1986)

    Article  Google Scholar 

  5. Bakhvalov, N., Panasenko, G.: Homogenisation: Averaging Processes in Periodic Media. Mathematics and Its Applications, vol. 36. Springer, Dordrecht (1989)

    Book  Google Scholar 

  6. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2008). https://doi.org/10.1007/978-0-387-75934-0

    Book  MATH  Google Scholar 

  7. Christensen, R.M.: Properties of carbon fibers. J. Mech. Phys. Solids 42(4), 681–695 (1994). https://doi.org/10.1016/0022-5096(94)90058-2

  8. Forest Products Laboratory: Wood handbook—wood as an engineering material. Technical report, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison (2010)

  9. Fosdick, R., Royer-Carfagni, G.: The constraint of local injectivity in linear elasticity theory. Proc. R. Soc. A Math. Phys. Eng. Sci. 457(2013), 2167–2187 (2001)

    Article  MathSciNet  Google Scholar 

  10. Givoli, D.: Asymptotic analysis for plane stress problems. J. Elast. 144(1), 1–14 (2021)

    Article  MathSciNet  Google Scholar 

  11. He, J.H.: Homotopy perturbation method: a new nonlinear analytical technique. Appl. Math. Comput. 135(1), 73–79 (2003). https://doi.org/10.1016/S0096-3003(01)00312-5

    Article  MathSciNet  MATH  Google Scholar 

  12. Johnson, J.A., Hermanson, J.C., Cramer, S.M., Amundson, C.: Stress singularities in a model of a wood disk under sinusoidal pressure. J. Eng. Mech. 131(2), 153–160 (2005)

    Article  Google Scholar 

  13. Lekhnitskii, S.G.: Anisotropic Plates. Gordon & Breach, New York (1968)

    Google Scholar 

  14. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1993)

    MATH  Google Scholar 

  15. Nie, G., Zhong, Z., Batra, R.: Material tailoring for orthotropic elastic rotating disks. Compos. Sci. Technol. 71(3), 406–414 (2011). https://doi.org/10.1016/j.compscitech.2010.12.010

    Article  Google Scholar 

Download references

Acknowledgements

This work was initiated during the visit of the second author to the São Carlos School of Engineering, University of São Paulo, Brazil, which was supported by PRInt USP/CAPES program, Grant n\(^{\circ }\) 88887.372694/2019-00. The first author acknowledges the support of National Council for Scientific and Technological Development (CNPq), Grant n\(^{\circ }\) 420099/2018-2, and the third author acknowledges the financial support provided by Coordination for the Improvement of Higher Education Personnel (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adair Roberto Aguiar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

We show details of the derivation of the expressions of \(A_{(i,j)}\) in (22). It follows from (21) that the derivatives of \({\hat{u}}_i(\rho )\) are given by:

$$\begin{aligned} \begin{aligned}&\frac{d}{d\rho }{\hat{u}}_i(\rho ) = \frac{1}{2^i\,i!}\, \beta \, \sum _{j=1}^i \left[ (-1)^j\,A_{(i,j)}\, (\log ^j\rho + j\,\log ^{j-1}\rho )\right] , \\&\frac{d^2}{d\rho ^2}{\hat{u}}_i(\rho ) = \frac{1}{2^i\,i!}\, \frac{\beta }{\rho }\, \sum _{j=1}^i \left[ (-1)^j\,A_{(i,j)}\, \left( j\,\log ^{j-1}\rho + j\,(j-1)\,\log ^{j-2}\rho \right) \right] . \end{aligned} \end{aligned}$$
(34)

By substituting (21), (34), and (19) in (16.b) for \(i = 1\), we obtain

$$\begin{aligned} \frac{1}{2}\,\frac{\beta }{\rho }\,(-2\,A_{(1,1)} + 2)\,\log ^0\rho = 0. \end{aligned}$$
(35)

For (35) to hold for all \(\rho \in (0,1)\), we must have \(A_{(1,1)} = 1\).

Next, for \(i \ge 2\), we substitute (21) and (34) into (16.b) to obtain

$$\begin{aligned} \begin{aligned} 0 =&\;(-1)^i\, i\,(i-1)\, A_{(i,i)}\,\log ^{i-2}\rho + (-1)^i\, 2\,i\, A_{(i,i)}\, \log ^{i-1}\rho \\&\;+\sum _{j=1}^{i-1}\,(-1)^j \left[ j\,(j-1)\, A_{(i,j)}\,\log ^{j-2}\rho + 2\,j\, A_{(i,j)}\,\log ^{j-1}\rho + 2\,i\, A_{(i-1,\,j)}\,\log ^j\rho \right] , \end{aligned} \end{aligned}$$
(36)

which can be rewritten as

$$\begin{aligned} \begin{aligned} 0 =&\left( -2\,A_{(i,1)} + 2\,A_{(i,2)}\right) \log ^0\rho \\&+ \left( -2\,i\,A_{(i-1,\,1)} + 4\,A_{(i,2)} - 6\,A_{(i,3)}\right) \log ^1\rho \\&+ \left( 2\,i\,A_{(i-1,2)} - 6\,A_{(i,3)} + 12\,A_{(i,4)}\right) \log ^2\rho \\&+ \ldots \\&+ \left[ (-1)^{l}\,2\,i\,A_{(i-1,\,l)} + (-1)^{l + 1}\,2\,(l + 1)\,A_{(i,\,l + 1)} + (-1)^{l + 2}\, (l + 2)\, (l + 1)\, A_{(i,\,l + 2)}\right] \log ^{l}\rho \\&+ \ldots \\&+ \left[ (-1)^{i-2}\,2\,i\,A_{(i-1,\,i-2)} + (-1)^{i-1}\,2\,(i-1)\,A_{(i,\,i-1)} + (-1)^{i}\, i\, (i-1)\, A_{(i,i)}\right] \log ^{i-2}\rho \\&+ \left[ (-1)^{i-1}\,2\,i\,A_{(i-1,\,i-1)} + (-1)^{i}\, 2\,i\, A_{(i,i)}\right] \log ^{i-1}\rho , \end{aligned} \end{aligned}$$
(37)

where \(1 \le l \le i-2\). For (37) to be satisfied for all \(\rho \in (0,1)\), the coefficients that multiply each power of \(\log \rho \) must be null. Therefore, for \(\log ^0\rho \), \(\log ^{l}\rho \) and \(\log ^{i-1}\rho \), it yields, respectively,

$$\begin{aligned} A_{(i,1)}= & {} A_{(i,2)}, \end{aligned}$$
(38)
$$\begin{aligned} A_{(i,\,l+1)}= & {} \frac{i}{l+1} \, A_{(i-1,\,l)} +\frac{l+2}{2}\,A_{(i,\,l+2)}, \end{aligned}$$
(39)
$$\begin{aligned} A_{(i,i)}= & {} A_{(i-1,\,i-1)}. \end{aligned}$$
(40)

By defining \(k {\mathop {=}\limits ^{\text {def}}}l + 1\), we rewrite (39) as

$$\begin{aligned} A_{(i,k)} = \frac{i}{k} \, A_{(i-1,\,k-1)} + \frac{k+1}{2}\,A_{(i,\,k+1)}. \end{aligned}$$
(41)

Finally, it follows from \(A_{(1,1)} = 1\), (38), (40), and (41) that \(A_{(i,j)}\) is given by (22).

Appendix B

Using proof by induction in i, we derive the expression (25.a) and show that the coefficients \(B_{(i,j)}\) in this expression are given by:

$$\begin{aligned} \begin{aligned}&B_{(1,1)} = 1,\\&B_{(i+1,\,1)} = (2\,i-1) \, B_{(i,1)},\\&B_{(i+1,\,i+1)} = B_{(i,i)},\\&B_{(i+1,\,j)} = B_{(i,\,j-1)} + (2\,i-j)\,B_{(i,j)}, \quad \text {for}\; 2\le j \le i, \end{aligned} \end{aligned}$$
(42)

which can be rewritten as (26). First, we use (13) together with both (6.b) and (10) to write

$$\begin{aligned} \begin{aligned} \frac{\partial {\hat{u}}}{\partial \varepsilon }(\rho ,\varepsilon )&= \frac{1}{2}\, \beta \,\rho ^\alpha \,\left[ -\frac{\log \rho }{\alpha }\right] , \qquad \alpha = \sqrt{1-\varepsilon }, \\ \frac{\partial ^2 {\hat{u}}}{\partial \varepsilon ^2}(\rho ,\varepsilon )&= \frac{1}{4}\, \beta \,\rho ^\alpha \,\left[ - \frac{\log \rho }{\alpha ^3} + \frac{\log ^2\rho }{\alpha ^2}\right] , \\ \frac{\partial ^3 {\hat{u}}}{\partial \varepsilon ^3}(\rho ,\varepsilon )&= \frac{1}{8}\, \beta \,\rho ^\alpha \,\left[ - 3\,\frac{\log \rho }{\alpha ^5} + 3\,\frac{\log ^2\rho }{\alpha ^4} -\frac{\log ^3\rho }{\alpha ^3}\right] , \\ \frac{\partial ^4 {\hat{u}}}{\partial \varepsilon ^4}(\rho ,\varepsilon )&= \frac{1}{16}\, \beta \,\rho ^\alpha \,\left[ - 15\,\frac{\log \rho }{\alpha ^7} + 15\,\frac{\log ^2\rho }{\alpha ^6} -6\,\frac{\log ^3\rho }{\alpha ^5} + \frac{\log ^4\rho }{\alpha ^4}\right] . \end{aligned} \end{aligned}$$
(43)

Comparing (43) with (25), we obtain the relations in (42) for \(i = 1,2,3,4\). This ends the proof of the base case.

To prove the induction step, we first apply the chain rule to (13) and write

$$\begin{aligned} \frac{\partial ^{i+1} {\hat{u}}}{\partial \varepsilon ^{i+1}}(\rho ,\varepsilon ) = \frac{\partial }{\partial \varepsilon }\left[ \frac{\partial ^{i} {\hat{u}}}{\partial \varepsilon ^{i}}(\rho ,\varepsilon )\right] = \frac{\partial }{\partial \alpha }\left[ \frac{\partial ^{i} {\hat{u}}}{\partial \varepsilon ^{i}}(\rho ,\varepsilon )\right] \frac{\partial \alpha }{\partial \varepsilon } = -\frac{1}{2\,\alpha }\,\frac{\partial }{\partial \alpha }\left[ \frac{\partial ^{i} {\hat{u}}}{\partial \varepsilon ^{i}}(\rho ,\varepsilon )\right] . \end{aligned}$$
(44)

Then, we use the induction hypothesis and (44) to write

$$\begin{aligned} \begin{aligned} \frac{\partial ^{i+1} {\hat{u}}}{\partial \varepsilon ^{i+1}}(\rho ,\varepsilon )&= -\frac{1}{2\,\alpha }\,\frac{\partial }{\partial \alpha }\left[ \frac{1}{2^i}\,\beta \,\rho ^\alpha \sum _{j=1}^i \frac{(-\log \rho )^j}{\alpha ^{2\,i-j}}\,B_{(i,j)}\right] \\ {}&= -\frac{\beta }{2^{i+1}\,\alpha } \sum _{j=1}^i \left[ (-\log \rho )^j\,\,B_{(i,j)}\, \frac{\partial }{\partial \alpha }\!\!\left( \frac{\rho ^\alpha }{\alpha ^{2\,i-j}}\right) \right] \ \\ {}&= -\frac{\beta }{2^{i+1}\,\alpha }\, \sum _{j=1}^i \left[ (-\log \rho )^j\,\,B_{(i,j)}\, \left( \frac{\rho ^\alpha \,\log \rho }{\alpha ^{2\,i-j}} - \frac{(2\,i-j)\,\rho ^\alpha }{\alpha ^{2\,i-j+1}} \right) \right] \\ {}&= \frac{\beta }{2^{i+1}}\,\rho ^\alpha \sum _{j=1}^i \left[ \frac{(-\log \rho )^{j+1}}{\alpha ^{2\,i-j+1}}\,B_{(i,j)} + \frac{(-\log \rho )^j}{\alpha ^{2\,i-j+2}}\,(2\,i-j)\,B_{(i,j)} \right] . \end{aligned} \end{aligned}$$
(45)

We define \(k{\mathop {=}\limits ^{\text {def}}}j+1\) and, after some algebraic manipulation, we obtain

$$\begin{aligned} \begin{aligned} \frac{\partial ^{i+1} {\hat{u}}}{\partial \varepsilon ^{i+1}}(\rho ,\varepsilon )&= \frac{\beta }{2^{i+1}}\,\rho ^\alpha \left[ \sum _{k=2}^{i+1} \frac{(-\log \rho )^{k}}{\alpha ^{2\,i-k+2}}\,B_{(i,\,k-1)} + \sum _{j=1}^i \frac{(-\log \rho )^j}{\alpha ^{2\,i-j+2}}\,(2\,i-j)\,B_{(i,j)} \right] \\ {}&= \frac{\beta }{2^{i+1}}\,\rho ^\alpha \,\Bigg [ \sum _{k=2}^{i} \frac{(-\log \rho )^{k}}{\alpha ^{2\,i-k+2}}\,B_{(i,\,k-1)} + \sum _{j=2}^i \frac{(-\log \rho )^j}{\alpha ^{2\,i-j+2}}\,(2\,i-j)\,B_{(i,j)} \\ {}&\qquad \qquad \quad \;+ \frac{(-\log \rho )^{i+1}}{\alpha ^{i+1}}\,B_{(i,i)} + \frac{(-\log \rho )}{\alpha ^{2\,i+1}}\,(2\,i-1)\,B_{(i,1)} \Bigg ] \\ {}&= \frac{\beta }{2^{i+1}}\,\rho ^\alpha \,\Bigg [ \sum _{j=2}^{i} \frac{(-\log \rho )^{j}}{\alpha ^{2\,(i+1)-j}}\, \left[ B_{(i,\,j-1)} + (2\,i-j)\,B_{(i,j)}\right] \\ {}&\qquad \qquad \quad \;+ \frac{(-\log \rho )^{i+1}}{\alpha ^{2\,(i+1)-(i+1)}}\,B_{(i,i)} + \frac{(-\log \rho )}{\alpha ^{2\,(i+1)-1}}\,(2\,i-1)\,B_{(i,1)} \Bigg ]. \end{aligned} \end{aligned}$$
(46)

Finally, we use (42) to identify the terms \(B_{(i+1,\,1)}\), \(B_{(i+1,\,i+1)}\), and \(B_{(i+1,\,j)}\), yielding

$$\begin{aligned} \begin{aligned} \frac{\partial ^{i+1} {\hat{u}}}{\partial \varepsilon ^{i+1}}(\rho ,\varepsilon )&= \frac{\beta }{2^{i+1}}\,\rho ^\alpha \,\Bigg [ \sum _{j=2}^{i} \frac{(-\log \rho )^{j}}{\alpha ^{2\,(i+1)-j}}\, B_{(i+1,\,j)} \\ {}&\quad + \frac{(-\log \rho )^{i+1}}{\alpha ^{2\,(i+1)-(i+1)}}\,B_{(i+1,\,i+1)} + \frac{(-\log \rho )^1}{\alpha ^{2\,(i+1)-1}}\,B_{(i+1,\,1)} \Bigg ] \\ {}&= \frac{1}{2^{i+1}}\,\beta \,\rho ^\alpha \sum _{j=1}^{i+1} \frac{(-\log \rho )^j}{\alpha ^{2\,(i+1)-j}}\,B_{(i+1,\,j)}, \end{aligned} \end{aligned}$$
(47)

and this completes the proof.

Appendix C

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguiar, A.R., Bravo-Castillero, J. & Rocha, L.A. Analysis of a cylindrically orthotropic disk using a regular perturbation method. Arch Appl Mech 92, 1983–1996 (2022). https://doi.org/10.1007/s00419-022-02171-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02171-9

Keywords

Navigation