Skip to main content
Log in

Contact problem between a rigid punch and a functionally graded orthotropic layer resting on a Pasternak foundation

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The present work is a pioneering study on the contact mechanics including Pasternak foundation model. The context of this research is frictionless plane contact problem between a rigid punch and a functionally graded orthotropic layer lying on a Pasternak foundation in the limits of the linear elasticity theory. The layer is pressed by rigid cylindrical or flat punches that apply a concentrated force in the normal direction. The orthotropic material parameters are assumed to vary exponentially in the in-depth direction. Applying the Fourier integral transform technique and the boundary conditions of the problem, a singular integral equation is obtained, in which the contact stress and the contact width are unknowns. Using the Gauss–Chebyshev integration formula the singular integral equation is solved numerically. Effects of the Pasternak foundation parameters, material inhomogeneity, external load, punch radius or punch length on the contact stress, the contact width, the vertical displacements on the top and bottom surfaces of the layer, the subsurface and in-plane stresses are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Choi, H.J.: On the plane contact problem of a functionally graded elastic layer loaded by a frictional sliding flat punch. J. Mech. Sci. Technol. 23(10), 2703–2713 (2009)

    Article  Google Scholar 

  2. Çömez, İ: Frictional moving contact problem for a layer indented by a rigid cylindrical punch. Arch. Appl. Mech. 87(12), 1993–2002 (2017)

    Article  Google Scholar 

  3. Chen, P., Chen, S., Peng, Z.: Thermo-contact mechanics of a rigid cylindrical punch sliding on a finite graded layer. Acta Mech. 223(12), 2647–2665 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, P., Chen, S.: Thermo-mechanical contact behavior of a finite graded layer under a sliding punch with heat generation. Int. J. Solids Struct. 50(7–8), 1108–1119 (2013)

    Article  Google Scholar 

  5. Zhou, Y.T., Lee, K.Y.: Thermo-electro-mechanical contact behavior of a finite piezoelectric layer under a sliding punch with frictional heat generation. J. Mech. Phys. Solids 59(5), 1037–1061 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, B.L., Han, J.C.: A circular indenter on a piezoelectric layer. Arch. Appl. Mech. 76(7), 367–379 (2006)

    Article  MATH  Google Scholar 

  7. Patra, R., Barik, S.P., Chaudhuri, P.K.: Frictionless contact of a rigid punch indenting an elastic layer having piezoelectric properties. Acta Mech. 228(2), 367–384 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ma, J., El-Borgi, S., Ke, L.L., Wang, Y.S.: Frictional contact problem between a functionally graded magnetoelectroelastic layer and a rigid conducting flat punch with frictional heat generation. J. Therm. Stresses 39(3), 245–277 (2016)

    Article  Google Scholar 

  9. Çömez, İ, Güler, M.A., El-Borgi, S.: Continuous and discontinuous contact problems of a homogeneous piezoelectric layer pressed by a conducting rigid flat punch. Acta Mech. 231(3), 957–976 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Çömez, İ: Frictional contact problem for a rigid cylindrical stamp and an elastic layer resting on a half plane. Int. J. Solids Struct. 47(7–8), 1090–1097 (2010)

    Article  MATH  Google Scholar 

  11. Rhimi, M., El-Borgi, S., Lajnef, N.: A double receding contact axisymmetric problem between a functionally graded layer and a homogeneous substrate. Mech. Mater. 43(12), 787–798 (2011)

    Article  Google Scholar 

  12. Karabulut, P.M., Adiyaman, G., Birinci, A.: A receding contact problem of a layer resting on a half plane. Struct. Eng. Mech. Int. J. 64(4), 505–513 (2017)

    Google Scholar 

  13. Yan J, Mi C: Double contact analysis of multilayered elastic structures involving functionally graded materials. Arch Mech. 2017;69(3)

  14. Choi, H.J., Paulino, G.H.: Thermoelastic contact mechanics for a flat punch sliding over a graded coating/substrate system with frictional heat generation. J. Mech. Phys. Solids 56(4), 1673–1692 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, J., Ke, L.L., Wang, Y.S.: Two-dimensional thermoelastic contact problem of functionally graded materials involving frictional heating. Int. J. Solids Struct. 48(18), 2536–2548 (2011)

    Article  Google Scholar 

  16. Balci, M.N., Dag, S., Yildirim, B.: Subsurface stresses in graded coatings subjected to frictional contact with heat generation. J. Therm. Stress. 40(4), 517–534 (2017)

    Article  Google Scholar 

  17. Nili, A., Adibnazari, S., Karimzadeh, A.: Stress field in the thermoelastic rolling contact of graded coatings. Arch. Appl. Mech. 88(10), 1805–1814 (2018)

    Article  Google Scholar 

  18. Wang, T., Ma, X., Wang, L., Gu, L., Yin, L., Zhang, J., et al.: Three-dimensional thermoelastic contact model of coated solids with frictional heat partition considered. Coatings 8(12), 470 (2018)

    Article  Google Scholar 

  19. Guler, M.A.: Closed-form solution of the two-dimensional sliding frictional contact problem for an orthotropic medium. Int. J. Mech. Sci. 87, 72–88 (2014)

    Article  Google Scholar 

  20. Erbaş, B., Yusufoğlu, E., Kaplunov, J.: A plane contact problem for an elastic orthotropic strip. J. Eng. Math. 70(4), 399–409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Comez, I., Yilmaz, K.B., Güler, M.A., Yildirim, B.: On the plane frictional contact problem of a homogeneous orthotropic layer loaded by a rigid cylindrical stamp. Arch. Appl. Mech. 89, 1–17 (2019)

    Article  Google Scholar 

  22. Alinia, Y., Hosseini-nasab, M., Güler, M.A.: The sliding contact problem for an orthotropic coating bonded to an isotropic substrate. Eur. J. Mech. A/Solids 70, 156–171 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yilmaz, K.B., Çömez, İ, Güler, M.A., Yildirim, B.: Analytical and finite element solution of the sliding frictional contact problem for a homogeneous orthotropic coating-isotropic substrate system. ZAMM J. Appl. Math. Mech. 99(3), e201800117 (2019)

    Article  MathSciNet  Google Scholar 

  24. Çömez, İ: Frictional moving contact problem of an orthotropic layer indented by a rigid cylindrical punch. Mech. Mater. 133, 120–127 (2019)

    Article  Google Scholar 

  25. Güler, M.A., Kucuksucu, A., Yilmaz, K.B., Yildirim, B.: On the analytical and finite element solution of plane contact problem of a rigid cylindrical punch sliding over a functionally graded orthotropic medium. Int. J. Mech. Sci. 120, 12–29 (2017)

    Article  Google Scholar 

  26. Yılmaz KB, Çömez İ, Güler MA, Yıldırım B: Frictional contact problem between a functionally graded orthotropic layer and a rigid flat punch. In: International Civil Engineering and Architecture Conference, Trabzon; 2019

  27. Arslan, O., Dag, S.: Contact mechanics problem between an orthotropic graded coating and a rigid punch of an arbitrary profile. Int. J. Mech. Sci. 135, 541–554 (2018)

    Article  Google Scholar 

  28. Dutta, S.C., Roy, R.: A critical review on idealization and modeling for interaction among soil–foundation–structure system. Comput. Struct. 80(20–21), 1579–1594 (2002)

    Article  Google Scholar 

  29. Winkler E: Theory of elasticity and strength, H. Dominicus, Prague; 1867

  30. Filonenko-Borodich, M.M.: Some approximate theories of the elastic foundations, Uchenyie Zapiski Moscovskogo Gosudarstuennogo Universiteta. Mechanika 46, 3–18 (1940). ((in Russian))

    Google Scholar 

  31. Pasternak PL: On a new method of analysis of an elastic foundation by means of two foundation constants, Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture, Moscow (in Russian); (1954)

  32. Kerr, A.D.: Elastic and viscoelastic foundation models. J. Appl. Mech. 31(3), 491–498 (1964)

    Article  MATH  Google Scholar 

  33. Vlasov VZ, Leont’ev NN: Beams, plates and shells on elastic foundations, Israel Program for Scientific Translation, Jerusalem (translated from Russian); 1966

  34. Nogami, T., Lam, Y.C.: Two-parameter layer model for analysis of slab on elastic foundation. J. Eng. Mech. 113(9), 1279–1291 (1987)

    Google Scholar 

  35. Özçelikörs, Y., Omurtag, M.H., Demir, H.: Analysis of orthotropic plate-foundation interaction by mixed finite element formulation using Gâteaux differential. Comput. Struct. 62(1), 93–106 (1997)

    Article  MATH  Google Scholar 

  36. Doğruoğlu, A.N., Omurtag, M.H.: Stability analysis of composite-plate foundation interaction by mixed FEM. J. Eng. Mech. 126(9), 928–936 (2000)

    Google Scholar 

  37. Muravskii, B.G.: Mechanics of Non-homogeneous and Anisotropic Foundations. Springer, Berlin (2012)

    Google Scholar 

  38. Kutlu, A., Uğurlu, B., Omurtag, M.H.: A combined boundary-finite element procedure for dynamic analysis of plates with fluid and foundation interaction considering free surface effect. Ocean Eng. 145, 34–43 (2017)

    Article  Google Scholar 

  39. Fazzolari, F.A.: Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous FG sandwich beams resting on elastic foundations. Compos. B Eng. 136, 254–271 (2018)

    Article  Google Scholar 

  40. Songsuwan, W., Pimsarn, M., Wattanasakulpong, N.: Dynamic responses of functionally graded sandwich beams resting on elastic foundation under harmonic moving loads. Int. J. Struct. Stab. Dyn. 18(09), 1850112 (2018)

    Article  MathSciNet  Google Scholar 

  41. Esen, I.: Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass. Int. J. Mech. Sci. 153, 21–35 (2019)

    Article  Google Scholar 

  42. Kaplunov, J., Prikazchikov, D., Sultanova, L.: Justification and refinement of Winkler-Fuss hypothesis. Z. Angew. Math. Phys. 69(3), 1–15 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Dempsey, J.P., Zhao, Z.G., Minnetyan, L., Li, H.: Plane contact of an elastic layer supported by a Winkler foundation. J. Appl. Mech. 57(4), 974–980 (1990)

    Article  Google Scholar 

  44. Dempsey, J.P., Zhao, Z.G., Li, H.: Axisymmetric indentation of an elastic layer supported by a Winkler foundation. Int. J. Solids Struct. 27(1), 73–87 (1991)

    Article  Google Scholar 

  45. Birinci, A., Erdol, R.: A frictionless contact problem for two elastic layers supported by a Winkler foundation. Struct. Eng. Mech. 15(3), 331–344 (2003)

    Article  Google Scholar 

  46. Woźniak, M., Hummel, A., Pauk, V.J.: Axisymmetric contact problems for an elastic layer resting on a rigid base with a Winkler type excavitation. Int. J. Solids Struct. 39(15), 4117–4131 (2002)

    Article  MATH  Google Scholar 

  47. Matysiak, S. J., Kulchytsky-Zhygailo, R., Perkowski DM: Stress distribution in an elastic layer resting on a Winkler foundation with an emptiness. Bull. Pol. Acad. Sci. Tech. Sci. 2018

  48. Çömez, İ: Contact problem of a functionally graded layer resting on a Winkler foundation. Acta Mech. 224(11), 2833–2843 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Erdogan, F., Gupta, G.D.A., Cook, T.S.: Numerical solution of singular integral equations. In: Methods of Analysis and Solutions of Crack Problems, pp. 368–425. Springer, Dordrecht (1973)

    Chapter  Google Scholar 

  50. Binienda, W.K., Pindera, M.J.: Frictionless contact of layered metal-matrix and polymer-matrix composite half planes. Compos. Sci. Technol. 50(1), 119–128 (1994)

    Article  Google Scholar 

  51. El-Borgi, S., Çömez, I.: A receding frictional contact problem between a graded layer and a homogeneous substrate pressed by a rigid punch. Mech. Mater. 114, 201–214 (2017)

    Article  Google Scholar 

  52. Kutlu, A., Omurtag, M.H.: Large deflection bending analysis of elliptic plates on orthotropic elastic foundation with mixed finite element method. Int. J. Mech. Sci. 65(1), 64–74 (2012)

    Article  Google Scholar 

  53. Krenk, S.: On quadrature formulas for singular integral equations of the first and the second kind. Q. Appl. Math. 33(3), 225–232 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İsa Çömez.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çömez, İ., Omurtag, M.H. Contact problem between a rigid punch and a functionally graded orthotropic layer resting on a Pasternak foundation. Arch Appl Mech 91, 3937–3958 (2021). https://doi.org/10.1007/s00419-021-01988-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01988-0

Keywords

Navigation