Skip to main content
Log in

Parametric study and stability analysis on nonlinear traveling wave vibrations of rotating thin cylindrical shells

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Parametric study and stability analysis on nonlinear traveling wave vibrations of rotating thin cylindrical shells with simply supported boundary conditions are carried out in the paper. Considering the Coriolis forces as well as the initial hoop tension due to rotation, an infinite-dimensional gyro system model with nonlinearity is established by using Lagrange equations. Based on this model, convergence analysis is performed and the most significant modes dominating the nonlinear behavior are recognized to discretize it to a finite multi-degree system. Then, the periodic solutions of the system are tracked by using harmonic balance method combined with arc length continuation technique. Furthermore, parametric studies are performed and the effects of rotating speed, damping ratio and the amplitude of excitation on the nonlinear dynamic behavior of the shell are investigated. Meanwhile, the Floquet theory is employed to carry out stability analysis of the periodic solutions. The results shown in this paper illustrate the nonlinear dynamic evolution of the traveling wave vibration for rotating thin cylindrical shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Saito, T., Endo, M.: Vibration of finite length, rotating cylindrical-shells. J. Sound Vib. 107(1), 17–28 (1986). https://doi.org/10.1016/0022-460x(86)90279-8

    Article  MATH  Google Scholar 

  2. Huang, S.C., Hsu, B.S.: Resonant phenomena of a rotating cylindrical-shell subjected to a harmonic moving load. J. Sound Vib. 136(2), 215–228 (1990). https://doi.org/10.1016/0022-460x(90)90852-Q

    Article  Google Scholar 

  3. Lam, K.Y., Loy, C.T.: Influence of boundary conditions for a thin laminated rotating cylindrical shell. Compos. Struct. 41(3–4), 215–228 (1998). https://doi.org/10.1016/S0263-8223(98)00012-9

    Article  Google Scholar 

  4. Jafari, A.A., Bagheri, M.: Free vibration of rotating ring stiffened cylindrical shells with non-uniform stiffener distribution. J. Sound Vib. 296(1–2), 353–367 (2006). https://doi.org/10.1016/j.jsv.2006.03.001

    Article  Google Scholar 

  5. Sun, S., Chu, S., Cao, D.: Vibration characteristics of thin rotating cylindrical shells with various boundary conditions. J. Sound Vib. 331(18), 4170–4186 (2012). https://doi.org/10.1016/j.jsv.2012.04.018

    Article  Google Scholar 

  6. Sun, S., Cao, D., Han, Q.: Vibration studies of rotating cylindrical shells with arbitrary edges using characteristic orthogonal polynomials in the Rayleigh–Ritz method. Int. J. Mech. Sci. 68, 180–189 (2013). https://doi.org/10.1016/j.ijmecsci.2013.01.013

    Article  Google Scholar 

  7. Qin, Z.Y., Chu, F.L., Zu, J.: Free vibrations of cylindrical shells with arbitrary boundary conditions: a comparison study. Int. J. Mech. Sci. 133, 91–99 (2017). https://doi.org/10.1016/j.ijmecsci.2017.08.012

    Article  Google Scholar 

  8. Qin, Z.Y., Yang, Z.B., Zu, J., Chu, F.L.: Free vibration analysis of rotating cylindrical shells coupled with moderately thick annular plates. Int. J. Mech. Sci. 142, 127–139 (2018). https://doi.org/10.1016/j.ijmecsci.2018.04.044

    Article  Google Scholar 

  9. Qin, Z.Y., Pang, X.J., Safaei, B., Chu, F.L.: Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions. Compos. Struct. 220, 847–860 (2019). https://doi.org/10.1016/j.compstruct.2019.04.046

    Article  Google Scholar 

  10. Qin, Z.Y., Safaei, B., Pang, X.J., Chu, F.L.: Traveling wave analysis of rotating functionally graded graphene platelet reinforced nanocomposite cylindrical shells with general boundary conditions. Results Phys (2019). https://doi.org/10.1016/j.rinp.2019.102752

    Article  Google Scholar 

  11. Amabili, M., Pellicano, F., Paidoussis, M.P.: Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid. Part I: Stability. J. Sound Vib. 225(4), 655–699 (1999). https://doi.org/10.1006/jsvi.1999.2255

    Article  Google Scholar 

  12. Amabili, M., Pellicano, F., Paidoussis, M.P.: Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid, part II: large-amplitude vibrations without flow. J. Sound Vib. 228(5), 1103–1124 (1999). https://doi.org/10.1006/jsvi.1999.2476

    Article  Google Scholar 

  13. Amabili, M., Pellicano, F., Paidoussis, M.P.: Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid. Part III: truncation effect without flow and experiments. J. Sound Vib. 237(4), 617–640 (2000). https://doi.org/10.1006/jsvi.2000.3071

    Article  Google Scholar 

  14. Amabili, M., Pellicano, F., Paidoussis, M.P.: Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid. Part IV: large-amplitude vibrations with flow. J Sound Vib. 237(4), 641–666 (2000). https://doi.org/10.1006/jsvi.2000.3070

    Article  Google Scholar 

  15. Amabili, M.: Theory and experiments for large-amplitude vibrations of empty and fluid-filled circular cylindrical shells with imperfections. J. Sound Vib. 262(4), 921–975 (2003). https://doi.org/10.1016/S0022-460x(02)01051-9

    Article  Google Scholar 

  16. Amabili, M., Balasubramanian, P., Ferrari, G.: Travelling wave and non-stationary response in nonlinear vibrations of water-filled circular cylindrical shells: experiments and simulations. J. Sound Vib. 381, 220–245 (2016). https://doi.org/10.1016/j.jsv.2016.06.026

    Article  Google Scholar 

  17. Amabili, M.: Nonlinear vibrations and stability of shells and plates. Cambridge University Press, New York (2008)

    Book  Google Scholar 

  18. Alijani, F., Amabili, M.: Non-linear vibrations of shells: a literature review from 2003 to 2013. Int. J. Non-Linear Mech. 58, 233–257 (2014). https://doi.org/10.1016/j.ijnonlinmec.2013.09.012

    Article  Google Scholar 

  19. Bich, D.H., Nguyen, N.X.: Nonlinear vibration of functionally graded circular cylindrical shells based on improved donnell equations. J. Sound Vib. 331(25), 5488–5501 (2012). https://doi.org/10.1016/j.jsv.2012.07.024

    Article  Google Scholar 

  20. Du, C.C., Li, Y.H., Jin, X.S.: Nonlinear forced vibration of functionally graded cylindrical thin shells. Thin-Walled Struct. 78, 26–36 (2014). https://doi.org/10.1016/j.tws.2013.12.010

    Article  Google Scholar 

  21. Jafari, A.A., Khalili, S.M.R., Tavakolian, M.: Nonlinear vibration of functionally graded cylindrical shells embedded with a piezoelectric layer. Thin-Walled Struct. 79, 8–15 (2014). https://doi.org/10.1016/j.tws.2014.01.030

    Article  Google Scholar 

  22. Breslavsky, I.D., Amabili, M., Legrand, M.: Static and Dynamic Behavior of Circular Cylindrical Shell Made of Hyperelastic Arterial Material. J. Appl. Mech. Trans. ASME 83(5), 051002 (2016). https://doi.org/10.1115/1.4032549

    Article  Google Scholar 

  23. Sofiyev, A.H., Hui, D., Haciyev, V.C., Erdem, H., Yuan, G.Q., Schnack, E., Guldal, V.: The nonlinear vibration of orthotropic functionally graded cylindrical shells surrounded by an elastic foundation within first order shear deformation theory. Compos. Part B-Eng. 116, 170–185 (2017). https://doi.org/10.1016/j.compositesb.2017.02.006

    Article  Google Scholar 

  24. Sheng, G.G., Wang, X.: The dynamic stability and nonlinear vibration analysis of stiffened functionally graded cylindrical shells. Appl. Math. Model. 56, 389–403 (2018). https://doi.org/10.1016/j.apm.2017.12.021

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, C.F., Li, P.Y., Zhong, B.F., Wen, B.C.: Geometrically nonlinear vibration of laminated composite cylindrical thin shells with non-continuous elastic boundary conditions. Nonlinear Dyn. 95(3), 1903–1921 (2019). https://doi.org/10.1007/s11071-018-4667-2

    Article  MATH  Google Scholar 

  26. Li, C.F., Zhong, B.F., Shen, Z.C., Zhang, J.R.: Modeling and nonlinear vibration characteristics analysis of symmetrically 3-layer composite thin circular cylindrical shells with arbitrary boundary conditions. Thin-Walled Struct. 142, 311–321 (2019). https://doi.org/10.1016/j.tws.2019.05.014

    Article  Google Scholar 

  27. Wu, Z.H., Zhang, Y.M., Yao, G.: Nonlinear forced vibration of functionally graded carbon nanotube reinforced composite circular cylindrical shells. Acta Mech. 231, 2497–2519 (2020). https://doi.org/10.1007/s00707-020-02650-6

    Article  MathSciNet  MATH  Google Scholar 

  28. Yadav, A., Amabili, M., Panda, S.K., Dey, T.: Non-linear vibration response of functionally graded circular cylindrical shells subjected to thermo-mechanical loading. Compos. Struct. 229, 111430 (2019). https://doi.org/10.1016/j.compstruct.2019.111430

    Article  Google Scholar 

  29. Wang, Y.Q., Guo, X.H., Chang, H.H., Li, H.Y.: Nonlinear dynamic response of rotating circular cylindrical shells with precession of vibrating shape-Part I: numerical solution. Int. J. Mech. Sci. 52(9), 1217–1224 (2010). https://doi.org/10.1016/j.ijmecsci.2010.05.008

    Article  Google Scholar 

  30. Wang, Y.Q., Guo, X.H., Chang, H.H., Li, H.Y.: Nonlinear dynamic response of rotating circular cylindrical shells with precession of vibrating shape-Part II: approximate analytical solution. Int. J. Mech. Sci. 52(9), 1208–1216 (2010). https://doi.org/10.1016/j.ijmecsci.2010.05.007

    Article  Google Scholar 

  31. Wang, Y.Q.: Nonlinear vibration of a rotating laminated composite circular cylindrical shell: traveling wave vibration. Nonlinear Dyn. 77(4), 1693–1707 (2014). https://doi.org/10.1007/s11071-014-1410-5

    Article  MathSciNet  Google Scholar 

  32. Liu, Y.Q., Chu, F.L.: Nonlinear vibrations of rotating thin circular cylindrical shell. Nonlinear Dyn. 67(2), 1467–1479 (2012). https://doi.org/10.1007/s11071-011-0082-7

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, T., Zhang, W., Mao, J.J., Zheng, Y.: Nonlinear breathing vibrations of eccentric rotating composite laminated circular cylindrical shell subjected to temperature, rotating speed and external excitations. Mech. Syst. Signal Process. 127, 463–498 (2019). https://doi.org/10.1016/j.ymssp.2019.02.061

    Article  Google Scholar 

  34. Sun, S., Liu, L., Cao, D.: Nonlinear travelling wave vibrations of a rotating thin cylindrical shell. J. Sound Vib. 431, 122–136 (2018). https://doi.org/10.1016/j.jsv.2018.05.042

    Article  Google Scholar 

  35. Amabili, M.: A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach. J. Sound Vib. 264(5), 1091–1125 (2003). https://doi.org/10.1016/S0022-460X(02)01385-8

    Article  Google Scholar 

  36. Amabili, M.: Nonlinear vibrations and stability of laminated shells using a modified first-order shear deformation theory. Eur. J. Mech. A Solids 68, 75–87 (2018). https://doi.org/10.1016/j.euromechsol.2017.11.005

    Article  MathSciNet  MATH  Google Scholar 

  37. Dey, T., Ramachandra, L.: Non-linear vibration analysis of laminated composite circular cylindrical shells. Compos. Struct. 163, 89–100 (2017)

    Article  Google Scholar 

  38. Zhang, Z.Y., Chen, Y.S.: Harmonic balance method with alternating frequency/time domain technique for nonlinear dynamical system with fractional exponential. Appl. Math. Mech. Engl. 35(4), 423–436 (2014). https://doi.org/10.1007/s10483-014-1802-9

    Article  MathSciNet  Google Scholar 

  39. Han, Q.K., Qin, Z.Y., Zhao, J.S., Chu, F.L.: Parametric instability of cylindrical thin shell with periodic rotating speeds. Int. J. Non-Linear Mech. 57, 201–207 (2013). https://doi.org/10.1016/j.ijnonlinmec.2013.08.002

    Article  Google Scholar 

  40. Chen, J.C., Babcock, C.D.: Nonlinear vibration of cylindrical shells. AIAA J 13(7), 868–876 (1975). https://doi.org/10.2514/3.60462

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Grant Nos. 11802129 and 11902184), Shandong Provincial Natural Science Foundation of China (Grant No. ZR2020QA039), and the Fundamental Research Funds of Shandong University for financial support in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shupeng Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

\({\mathbf{c}}_{\lambda } \left( {\lambda = u,v,w} \right)\), and \({\mathbf{H}}_{i} \left( {i = 1,2, \ldots ,18} \right)\) are given by the following:

$$\begin{aligned} \begin{array}{*{20}l} {\mathbf{c}_{\lambda } = \left[ {\begin{array}{*{20}l} \ddots \hfill & {} \hfill & {} \hfill & {} \hfill \\ {} \hfill & {c_{{c,mn}}^{\lambda } } \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {c_{{s,mn}}^{\lambda } } \hfill & {} \hfill \\ {} \hfill & {} \hfill & {} \hfill & \ddots \hfill \\ \end{array} } \right] \triangleq \left[ {\begin{array}{*{20}l} \ddots \hfill & {} \hfill & {} \hfill & {} \hfill \\ {} \hfill & {c_{{0,mn}}^{\lambda } } \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {c_{{0,mn}}^{\lambda } } \hfill & {} \hfill \\ {} \hfill & {} \hfill & {} \hfill & \ddots \hfill \\ \end{array} } \right]\quad \left( {\lambda = u,v,w} \right).} \hfill & {} \hfill \\ {{\mathbf{H}}_{1} = L\int_{0}^{{2\pi }} {\int_{0}^{1} {{\mathbf{U}}^{T} \left( {\xi ,\theta } \right){\mathbf{U}}\left( {\xi ,\theta } \right){\text{d}}\xi {\text{d}}\theta } } } \hfill & {{\mathbf{H}}_{2} = \frac{1}{L}\int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial {\mathbf{U}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}} \right]} } ^{T} \frac{{\partial U\left( {\xi ,\theta } \right)}}{{\partial \xi }}{\text{d}}\xi {\text{d}}\theta } \hfill \\ {{\mathbf{H}}_{3} = L\int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial {\mathbf{U}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}} \right]} } ^{T} \frac{{\partial {\mathbf{U}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}{\text{d}}\xi {\text{d}}\theta } \hfill & {{\mathbf{H}}_{4} = \int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial {\mathbf{U}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}} \right]} } ^{T} \frac{{\partial {\mathbf{V}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}{\text{d}}\xi {\text{d}}\theta } \hfill \\ {{\mathbf{H}}_{5} = \int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial {\mathbf{U}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}} \right]} } ^{T} \frac{{\partial {\mathbf{V}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}{\text{d}}\xi {\text{d}}\theta } \hfill & {{\mathbf{H}}_{6} = \int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial {\mathbf{U}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}} \right]} } ^{T} {\mathbf{W}}\left( {\xi ,\theta } \right){\text{d}}\xi {\text{d}}\theta } \hfill \\ {{\mathbf{H}}_{7} = L\int_{0}^{{2\pi }} {\int_{0}^{1} {{\mathbf{V}}^{T} \left( {\xi ,\theta } \right){\mathbf{V}}\left( {\xi ,\theta } \right){\text{d}}\xi {\text{d}}\theta } } } \hfill & {{\mathbf{H}}_{8} = \frac{1}{L}\int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial {\mathbf{V}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}} \right]^{T} \frac{{\partial {\mathbf{V}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}{\text{d}}\xi {\text{d}}\theta } } } \hfill \\ {{\mathbf{H}}_{9} = L\int_{0}^{{2\pi }} {\int_{0}^{1} {{\mathbf{V}}^{T} \left( {\xi ,\theta } \right){\mathbf{W}}\left( {\xi ,\theta } \right){\text{d}}\xi {\text{d}}\theta } } } \hfill & {{\mathbf{H}}_{{10}} = L\int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial {\mathbf{V}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}} \right]^{T} \frac{{\partial {\mathbf{V}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}{\text{d}}\xi {\text{d}}\theta } } } \hfill \\ {{\mathbf{H}}_{{11}} = L\int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial {\mathbf{V}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}} \right]^{T} {\mathbf{W}}\left( {\xi ,\theta } \right){\text{d}}\xi {\text{d}}\theta } } } \hfill & {{\mathbf{H}}_{{12}} = L\int_{0}^{{2\pi }} {\int_{0}^{1} {{\mathbf{V}}^{T} \left( {\xi ,\theta } \right)\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}{\text{d}}\xi {\text{d}}\theta } } } \hfill \\ {{\mathbf{H}}_{{13}} = L\int_{0}^{{2\pi }} {\int_{0}^{1} {W^{T} \left( {\xi ,\theta } \right){\mathbf{W}}\left( {\xi ,\theta } \right){\text{d}}\xi {\text{d}}\theta } } } \hfill & {{\mathbf{H}}_{{14}} = \frac{1}{{L^{3} }}\int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial ^{2} {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi ^{2} }}} \right]^{T} \frac{{\partial ^{2} {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi ^{2} }}{\text{d}}\xi {\text{d}}\theta } } } \hfill \\ {{\mathbf{H}}_{{15}} = \frac{1}{L}\int_{0}^{{2\pi }} {\int_{0}^{1} {\left\{ {\left[ {\frac{{\partial ^{2} {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi ^{2} }}} \right]^{T} \frac{{\partial ^{2} {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta ^{2} }} + \left[ {\frac{{\partial ^{2} {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta ^{2} }}} \right]^{T} \frac{{\partial ^{2} {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi ^{2} }}} \right\}{\text{d}}\xi {\text{d}}\theta } } } \hfill & {} \hfill \\ {{\mathbf{H}}_{{16}} = L\int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial ^{2} {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta ^{2} }}} \right]^{T} \frac{{\partial ^{2} {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta ^{2} }}{\text{d}}\xi {\text{d}}\theta } } } \hfill & {{\mathbf{H}}_{{17}} = \frac{1}{L}\int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial ^{2} {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi \partial \theta }}} \right]^{T} \frac{{\partial ^{2} {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi \partial \theta }}{\text{d}}\xi {\text{d}}\theta } } } \hfill \\ {{\mathbf{H}}_{{18}} = L\int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}} \right]^{T} \frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}{\text{d}}\xi {\text{d}}\theta } } } \hfill & {} \hfill \\ \end{array} \hfill \\ \hfill \\ \end{aligned}$$

Appendix B

\({\mathbf{N}}_{u}\),\({\mathbf{N}}_{v}\) and \({\mathbf{N}}_{w}\) are given by the following:

$$\begin{aligned} {\mathbf{N}}_{u} & = \frac{RH}{2}Q_{11} {\mathbf{N}}_{1} + \frac{H}{2R}Q_{12} {\mathbf{N}}_{2} + \frac{H}{R}G{\mathbf{N}}_{3} , \\ {\mathbf{N}}_{v} & = \frac{H}{2}Q_{12} {\mathbf{N}}_{4} + \frac{H}{{2R^{2} }}Q_{22} {\mathbf{N}}_{5} + HG{\mathbf{N}}_{6} , \\ {\mathbf{N}}_{w} & = \frac{{RHQ_{11} }}{2}{\mathbf{N}}_{7} + \frac{{HQ_{22} }}{{2R^{3} }}{\mathbf{N}}_{8} + \left( {\frac{{HQ_{12} }}{2R} + \frac{HG}{R}} \right){\mathbf{N}}_{9} + RHQ_{11} {\mathbf{N}}_{10} + HQ_{12} {\mathbf{N}}_{11} + \frac{{HQ_{12} }}{2}{\mathbf{N}}_{12} + HQ_{12} {\mathbf{N}}_{13} + HQ_{12} \frac{1}{R}{\mathbf{N}}_{14} \\ & \quad + \frac{H}{{R^{2} }}Q_{22} {\mathbf{N}}_{15} + \frac{H}{{2R^{2} }}Q_{22} {\mathbf{N}}_{16} + \frac{H}{{R^{2} }}Q_{22} {\mathbf{N}}_{17} + \frac{H}{R}G{\mathbf{N}}_{18} + HG{\mathbf{N}}_{19} , \\ \end{aligned}$$

, where

$$\begin{aligned} {\mathbf{N}}_{1} & = \frac{1}{{L^{2} }}\int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}{\mathbf{w}}\left( t \right)} \right]} } ^{2} \left[ {\frac{{\partial {\mathbf{U}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}} \right]^{T} {\text{d}}\xi {\text{d}}\theta \\ {\mathbf{N}}_{2} & = \int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}{\mathbf{w}}\left( t \right)} \right]} } ^{2} \left[ {\frac{{\partial {\mathbf{U}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}} \right]^{T} {\text{d}}\xi {\text{d}}\theta \\ {\mathbf{N}}_{3} & = \int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}{\mathbf{w}}\left( t \right)} \right]\left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}{\mathbf{w}}\left( t \right)} \right]\left[ {\frac{{\partial {\mathbf{U}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}} \right]^{T} } } {\text{d}}\xi {\text{d}}\theta \\ {\mathbf{N}}_{4} & = \frac{1}{L}\int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}{\mathbf{w}}\left( t \right)} \right]} } ^{2} \left[ {\frac{{\partial {\mathbf{V}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}} \right]^{T} {\text{d}}\xi {\text{d}}\theta \\ {\mathbf{N}}_{5} & = L\int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}{\mathbf{w}}\left( t \right)} \right]} } ^{2} \left[ {\frac{{\partial {\mathbf{V}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}} \right]^{T} {\text{d}}\xi {\text{d}}\theta \\ {\mathbf{N}}_{6} & = \frac{1}{L}\int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}{\mathbf{w}}\left( t \right)} \right]} } \left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}{\mathbf{w}}\left( t \right)} \right]\left[ {\frac{{\partial {\mathbf{V}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}} \right]^{T} {\text{d}}\xi {\text{d}}\theta \\ {\mathbf{N}}_{7} & = \frac{1}{{L^{3} }}\int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}{\mathbf{w}}\left( t \right)} \right]^{3} \left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}} \right]^{T} {\text{d}}\xi {\text{d}}\theta } } \\ {\mathbf{N}}_{8} & = L\int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}{\mathbf{w}}\left( t \right)} \right]^{3} \left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}} \right]^{T} {\text{d}}\xi {\text{d}}\theta } } \\ {\mathbf{N}}_{9} & = \frac{1}{L}\int_{0}^{{2\pi }} {\int_{0}^{1} {\left\{ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}{\mathbf{w}}\left( t \right)\left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}{\mathbf{w}}\left( t \right)} \right]^{2} \left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}} \right]^{T} + \frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}w\left( t \right)\left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}{\mathbf{w}}\left( t \right)} \right]^{2} \left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}} \right]^{T} } \right\}{\text{d}}\xi {\text{d}}\theta } } \\ {\mathbf{N}}_{{10}} & = \frac{1}{{L^{2} }}\int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial {\mathbf{U}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}{\mathbf{u}}\left( t \right)} \right]} } \left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}{\mathbf{w}}\left( t \right)} \right]\left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}} \right]^{T} {\text{d}}\xi {\text{d}}\theta \\ {\mathbf{N}}_{{11}} & = \frac{1}{L}\int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial V\left( {\xi ,\theta } \right)}}{{\partial \theta }}v\left( t \right)} \right]} } \left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}} \right]^{T} \left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}} \right]{\mathbf{w}}\left( t \right){\text{d}}\xi {\text{d}}\theta \\ {\mathbf{N}}_{{12}} & = \frac{1}{L}\int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}{\mathbf{w}}\left( t \right)} \right]^{2} {\mathbf{W}}^{T} \left( {\xi ,\theta } \right)} } {\text{d}}\xi {\text{d}}\theta \\ {\mathbf{N}}_{{13}} & = \frac{1}{L}\int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {{\mathbf{W}}\left( {\xi ,\theta } \right){\mathbf{w}}\left( t \right)} \right]} } \left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}} \right]^{T} \left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}} \right]{\mathbf{w}}\left( t \right){\text{d}}\xi {\text{d}}\theta \\ {\mathbf{N}}_{{14}} & = \int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial {\mathbf{U}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}u\left( t \right)} \right]} } \left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}} \right]^{T} \left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}} \right]{\mathbf{w}}\left( t \right){\text{d}}\xi {\text{d}}\theta \\ {\mathbf{N}}_{{15}} & = L\int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial {\mathbf{V}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}v\left( t \right)} \right]} } \left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}} \right]^{T} \left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}} \right]{\mathbf{w}}\left( t \right){\text{d}}\xi {\text{d}}\theta \\ {\mathbf{N}}_{{16}} & = L\int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}{\mathbf{w}}\left( t \right)} \right]^{2} {\mathbf{W}}^{T} \left( {\xi ,\theta } \right){\text{d}}\xi {\text{d}}\theta } } \\ {\mathbf{N}}_{{17}} & = L\int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {{\mathbf{W}}\left( {\xi ,\theta } \right){\mathbf{w}}\left( t \right)} \right]\left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}} \right]^{T} \left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}} \right]{\mathbf{w}}\left( t \right)} } {\text{d}}\xi {\text{d}}\theta \\ {\mathbf{N}}_{{18}} & = \int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial {\mathbf{U}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}u\left( t \right)} \right]\left\{ {\left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}} \right]^{T} \left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}} \right] + \left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}} \right]^{T} \left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}} \right]} \right\}{\mathbf{w}}\left( t \right)} } {\text{d}}\xi {\text{d}}\theta \\ {\mathbf{N}}_{{19}} & = \frac{1}{L}\int_{0}^{{2\pi }} {\int_{0}^{1} {\left[ {\frac{{\partial {\mathbf{V}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}v\left( t \right)} \right]\left\{ {\left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}} \right]^{T} \left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}} \right] + \left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \xi }}} \right]^{T} \left[ {\frac{{\partial {\mathbf{W}}\left( {\xi ,\theta } \right)}}{{\partial \theta }}} \right]} \right\}{\mathbf{w}}\left( t \right)} } {\text{d}}\xi {\text{d}}\theta \\ \end{aligned}$$

Appendix C

\({\overline{\mathbf{H}}}_{i} \;(i = 1,2, \ldots ,18)\) are given by the following:

$$\begin{aligned} & {\overline{\mathbf{H}}}_{1} = H_{1} /L,\quad {\overline{\mathbf{H}}}_{2} = H_{2} L,\quad {\overline{\mathbf{H}}}_{3} = H_{3} /L,\quad {\overline{\mathbf{H}}}_{4} = H_{4} ,\quad {\overline{\mathbf{H}}}_{5} = H_{5} ,\quad {\overline{\mathbf{H}}}_{6} = H_{6} ,\quad {\overline{\mathbf{H}}}_{7} = H_{7} /L, \\ & {\overline{\mathbf{H}}}_{8} = H_{8} L,\quad {\overline{\mathbf{H}}}_{9} = H_{9} /L,\quad {\overline{\mathbf{H}}}_{10} = H_{10} /L,\quad {\overline{\mathbf{H}}}_{11} = H_{11} /L,\quad {\overline{\mathbf{H}}}_{12} = H_{12} /L,\quad {\overline{\mathbf{H}}}_{13} = H_{13} /L, \\ & {\overline{\mathbf{H}}}_{14} = H_{14} L^{3} ,\quad {\overline{\mathbf{H}}}_{15} = H_{15} L,\quad {\overline{\mathbf{H}}}_{16} = H_{16} /L,\quad {\overline{\mathbf{H}}}_{17} = H_{17} L,\quad {\overline{\mathbf{H}}}_{18} = H_{18} /L. \\ \end{aligned}$$

\({\overline{\mathbf{N}}}_{\lambda }^{{}} \;\left( {\lambda = u,v,w} \right)\) are given by the following:

$$\begin{aligned} {\overline{\mathbf{N}}}_{u} & = \frac{{H_{r} }}{{2L_{r}^{3} }}{\overline{\mathbf{N}}}_{1} { + }\frac{{\mu H_{r} }}{{2L_{r} }}{\overline{\mathbf{N}}}_{2} { + }\frac{{\left( {1 - \mu } \right)H_{r} }}{{2L_{r} }}{\overline{\mathbf{N}}}_{3} , \\ {\overline{\mathbf{N}}}_{v} & = \frac{{\mu H_{r} }}{{2L_{r}^{2} }}{\overline{\mathbf{N}}}_{4} + \frac{{H_{r} }}{2}{\overline{\mathbf{N}}}_{5} + \frac{{\left( {1 - \mu } \right)H_{r} }}{{2L_{r}^{2} }}{\overline{\mathbf{N}}}_{6} , \\ {\overline{\mathbf{N}}}_{w} & = \frac{{H_{r}^{2} }}{{2L_{r}^{4} }}{\overline{\mathbf{N}}}_{7} + \frac{{H_{r}^{2} }}{2}{\overline{\mathbf{N}}}_{8} \, + \frac{{H_{r}^{2} }}{{2L_{r}^{2} }}{\overline{\mathbf{N}}}_{9} + \frac{{H_{r} }}{{L_{r}^{3} }}{\overline{\mathbf{N}}}_{10} + \frac{{\mu H_{r} }}{{L_{r}^{2} }}{\overline{\mathbf{N}}}_{11} + \frac{{\mu H_{r} }}{{2L_{r}^{2} }}{\overline{\mathbf{N}}}_{12} + \frac{{\mu H_{r} }}{{L_{r}^{2} }}{\overline{\mathbf{N}}}_{13} + \frac{{\mu H_{r} }}{{L_{r} }}{\overline{\mathbf{N}}}_{14} \\ & \quad + H_{r} {\overline{\mathbf{N}}}_{15} + \frac{{H_{r} }}{2}{\overline{\mathbf{N}}}_{16} + H_{r} {\overline{\mathbf{N}}}_{17} + \frac{{\left( {1 - \mu } \right)H_{r} }}{{2L_{r} }}{\overline{\mathbf{N}}}_{18} + \frac{{\left( {1 - \mu } \right)H_{r} }}{{2L_{r}^{2} }}{\overline{\mathbf{N}}}_{19} , \\ \end{aligned}$$

, where

$$\begin{aligned} & {\overline{\mathbf{N}}}_{1} = {\mathbf{N}}_{1} L^{2} /H^{2} ,\quad {\overline{\mathbf{N}}}_{2} = {\mathbf{N}}_{2} /H^{2} ,\quad {\overline{\mathbf{N}}}_{3} = {\mathbf{N}}_{3} /H^{2} ,\quad {\overline{\mathbf{N}}}_{4} = {\mathbf{N}}_{4} L/H^{2} ,\quad {\overline{\mathbf{N}}}_{5} = {\mathbf{N}}_{5} /LH^{2} , \\ & {\overline{\mathbf{N}}}_{6} = {\mathbf{N}}_{6} L/H^{2} ,\quad {\overline{\mathbf{N}}}_{7} = {\mathbf{N}}_{7} L^{3} /H^{3} ,\quad {\overline{\mathbf{N}}}_{8} = {\mathbf{N}}_{8} /LH^{3} ,\quad {\overline{\mathbf{N}}}_{9} = {\mathbf{N}}_{9} L/H^{3} ,\quad {\overline{\mathbf{N}}}_{10} = {\mathbf{N}}_{10} L^{2} /H^{2} , \\ & {\overline{\mathbf{N}}}_{11} = {\mathbf{N}}_{11} L/H^{2} ,\quad {\overline{\mathbf{N}}}_{12} = {\mathbf{N}}_{12} L/H^{2} ,\quad {\overline{\mathbf{N}}}_{13} = {\mathbf{N}}_{13} L/H^{2} ,\quad {\overline{\mathbf{N}}}_{14} = {\mathbf{N}}_{14} /H^{2} ,\quad {\overline{\mathbf{N}}}_{15} = {\mathbf{N}}_{15} /LH^{2} , \\ & {\overline{\mathbf{N}}}_{16} = {\mathbf{N}}_{16} /LH^{2} ,\quad {\overline{\mathbf{N}}}_{17} = {\mathbf{N}}_{17} /LH^{2} ,\quad {\overline{\mathbf{N}}}_{18} = {\mathbf{N}}_{18} /H^{2} ,\quad {\overline{\mathbf{N}}}_{19} = {\mathbf{N}}_{19} L/H^{2} . \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Liu, L. Parametric study and stability analysis on nonlinear traveling wave vibrations of rotating thin cylindrical shells. Arch Appl Mech 91, 2833–2851 (2021). https://doi.org/10.1007/s00419-021-01934-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01934-0

Keywords

Navigation