Skip to main content
Log in

A novel quadrilateral element for analysis of functionally graded porous plates/shells reinforced by graphene platelets

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper firstly presents numerical analyses of functionally graded porous plates/shells with graphene platelets (GPLs) reinforcement using a novel four-node quadrilateral element with five degrees of freedom per node, namely SQ4P, based on the first-order shear deformation theory and Chebyshev polynomials. The novelty of the present element is to use the high-order shape functions which satisfy the interpolation condition at the points based on Chebyshev polynomials to build the new flat four-node element for analysis of plate/shell structures. The Chebyshev polynomials are a sequence of orthogonal polynomials that are described recursively and the values of these polynomials belong to the interval [−1,1] as well as vanish at the Gauss points. Full Gauss quadrature rule is used to establish the stiffness matrix, geometric stiffness matrix, mass matrix and load vector. Various dispersions of GPLs and internal pores into the metal matrix through the thickness of structure are considered with the rule of a mixture and the Halpin–Tsai model for evaluating effective material properties across the thickness. The influence of weight fraction, porosity coefficient and dimensions of GPLs, distribution of GPLs and porosity into metal matrix are fully studied via several numerical examples from static bending to free vibration and buckling response. Numerical results and comparison with other solutions from available references suggest that the present element has enough reliability and validity to use in structural analysis. With regular and irregular meshes, these results are in close agreement with the exact solutions by using the suitable value for the order of the shape functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Betts, C.: Benefits of metal foams and developments in modelling techniques to assess their materials behaviour: a review. Mater. Sci. Technol. 28(2), 129–143 (2012)

    Google Scholar 

  2. Lefebvre, L.-P., Banhart, J., Dunand, D.C.: Porous metals and metallic foams: current status and recent developments. Adv. Eng. Mater. 10(9), 775–787 (2008)

    Google Scholar 

  3. Kulshreshtha, A., Dhakad, S.K.: Preparation of metal foam by different methods: a review. Mater. Today: Proc. 26, 1784–1790 (2020)

    Google Scholar 

  4. Rajan, V.S., et al.: Influence of metal foam properties on performance of polymer composite spur gear. Mater. Today: Proc. 24, 1244–1250 (2020)

    Google Scholar 

  5. Smith, B.H., et al.: Steel foam for structures: a review of applications, manufacturing and material properties. J. Constr. Steel Res. 71, 1–10 (2012)

    Google Scholar 

  6. Pompe, W., et al.: Functionally graded materials for biomedical applications. Mater. Sci. Eng. A 362(1), 40–60 (2003)

    Google Scholar 

  7. Watari, F., et al.: Biocompatibility of materials and development to functionally graded implant for bio-medical application. Compos. Sci. Technol. 64(6), 893–908 (2004)

    Google Scholar 

  8. Marx, J.C., et al.: Polymer infused composite metal foam as a potential aircraft leading edge material. Appl. Surf. Sci. 505, 144114 (2020)

    Google Scholar 

  9. Yang, X., et al.: Design and operating evaluation of a finned shell-and-tube thermal energy storage unit filled with metal foam. Appl. Energy 261, 114385 (2020)

    Google Scholar 

  10. Zhang, J., et al.: A theoretical study of low-velocity impact of metal foam-filled circular tubes. Thin-Walled Struct. 148, 106525 (2020)

    Google Scholar 

  11. Sardari, P.T., et al.: Energy recovery from domestic radiators using a compact composite metal Foam/PCM latent heat storage. J. Cleaner Prod. 257, 120504 (2020)

    Google Scholar 

  12. Tong, X., et al.: Degradation behavior, cytotoxicity, hemolysis, and antibacterial properties of electro-deposited Zn–Cu metal foams as potential biodegradable bone implants. Acta Biomater. 102, 481–492 (2020)

    Google Scholar 

  13. Catanzano, O., et al.: Macroporous alginate foams crosslinked with strontium for bone tissue engineering. Carbohyd. Polym. 202, 72–83 (2018)

    Google Scholar 

  14. Ferreira, F.V., et al.: Porous nanocellulose gels and foams: Breakthrough status in the development of scaffolds for tissue engineering. Mater. Today 37, 126–141 (2020)

    Google Scholar 

  15. Manakari, V., et al.: Evaluation of wear resistance of magnesium/glass microballoon syntactic foams for engineering/biomedical applications. Ceram. Int. 45(7, Part A), 9302–9305 (2019)

    Google Scholar 

  16. Liu, P.S., Ma, X.M.: Property relations based on the octahedral structure model with body-centered cubic mode for porous metal foams. Mater. Des. 188, 108413 (2020)

    Google Scholar 

  17. Olszowska, K., et al.: Three-dimensional nanostructured graphene: synthesis and energy, environmental and biomedical applications. Synth. Met. 234, 53–85 (2017)

    Google Scholar 

  18. Li, K., et al.: Isogeometric Analysis of functionally graded porous plates reinforced by graphene platelets. Compos. Struct. 204, 114–130 (2018)

    Google Scholar 

  19. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Google Scholar 

  20. Gong, L., et al.: Optimizing the reinforcement of polymer-based nanocomposites by graphene. ACS Nano 6(3), 2086–2095 (2012)

    Google Scholar 

  21. Ghodrati, H., Ghomashchi, R.: Effect of graphene dispersion and interfacial bonding on the mechanical properties of metal matrix composites: an overview. FlatChem 16, 100113 (2019)

    Google Scholar 

  22. Pattnaik, S., Kumar Sutar, M.: Graphene base nanocomposites: an overview. Mater. Today: Proc. 18, 5432–5437 (2019)

    Google Scholar 

  23. Liew, K.M., Kai, M.F., Zhang, L.W.: Carbon nanotube reinforced cementitious composites: an overview. Compos. A Appl. Sci. Manuf. 91, 301–323 (2016)

    Google Scholar 

  24. Mubarak, N.M., et al.: An overview on methods for the production of carbon nanotubes. J. Ind. Eng. Chem. 20(4), 1186–1197 (2014)

    Google Scholar 

  25. Zhao, S., et al.: Functionally graded graphene reinforced composite structures: a review. Eng. Struct. 210, 110339 (2020)

    Google Scholar 

  26. Boehm, H.P., et al.: Surface properties of extremely thin graphite lamellae. In: Proceedings of the Fifth Conference on Carbon. Pergamon, pp. 73–80 (1962).

  27. Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science 306(5696), 666 (2004)

    Google Scholar 

  28. Novoselov, K.S., et al.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005)

    Google Scholar 

  29. Novoselov, K.S., et al.: Room-temperature quantum hall effect in graphene. Science 315(5817), 1379 (2007)

    Google Scholar 

  30. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Google Scholar 

  31. Geim, A.K.: Graphene: status and prospects. Science 324(5934), 1530 (2009)

    Google Scholar 

  32. Balandin, A.A., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)

    Google Scholar 

  33. Kuilla, T., et al.: Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35(11), 1350–1375 (2010)

    Google Scholar 

  34. Rafiee, M.A., et al.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12), 3884–3890 (2009)

    Google Scholar 

  35. Zaman, I., et al.: From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites. Nanoscale 4(15), 4578–4586 (2012)

    Google Scholar 

  36. Tiwari, S.K., et al.: Graphene research and their outputs: status and prospect. J. Sci. Adv. Mater. Dev. 5(1), 10–29 (2020)

    MathSciNet  Google Scholar 

  37. Bui, T.Q., et al.: On the high temperature mechanical behaviors analysis of heated functionally graded plates using FEM and a new third-order shear deformation plate theory. Compos. B Eng. 92, 218–241 (2016)

    Google Scholar 

  38. Hu, X., et al.: A new cohesive crack tip symplectic analytical singular element involving plastic zone length for fatigue crack growth prediction under variable amplitude cyclic loading. Eur. J. Mech. A. Solids 65, 79–90 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Ton-That, H.L., Nguyen-Van, H., Chau-Dinh, T.: An improved four-node element for analysis of composite plate/shell structures based on twice interpolation strategy. Int. J. Comput. Methods 17(06), 1950020 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Ton That, H.L., Nguyen-Van, H., Chau-Dinh, T.: Nonlinear bending analysis of functionally graded plates using SQ4T elements based on twice interpolation strategy. J. Appl. Comput. Mech. 6(1), 125–136 (2020)

    Google Scholar 

  41. That-Hoang, L.T., et al.: Enhancement to four-node quadrilateral plate elements by using cell-based smoothed strains and higher-order shear deformation theory for nonlinear analysis of composite structures. J. Sandwich Struct. Mater. (2018). https://doi.org/10.1177/1099636218797982

    Article  Google Scholar 

  42. Ton-That, H.L.: Improvement on eight-node quadrilateral element (IQ8) using twice-interpolation strategy for linear elastic fracture mechanics. Eng. Solid Mech. 8(4), 323–336 (2020)

    Google Scholar 

  43. Ton-That, H.L., Nguyen-Van H.: A combined strain element in static, frequency and buckling analyses of laminated composite plates and shells. Period. Polytech. Civ. Eng. 65(1), 56–71 (2021)

    Google Scholar 

  44. Ton-That, H.L., Nguyen-Van, H., Chau-Dinh, T.: Static and buckling analyses of stiffened plate/shell structures using the quadrilateral element SQ4C. Comptes Rendus. Mécanique 348(4), 285–305 (2020)

    Google Scholar 

  45. Nguyen-Van, H., Mai-Duy, N., Karunasena, W., Tran-Cong, T.: Buckling and vibration analysis of laminated composite plate/shell structures via a smoothed quadrilateral flat shell element with in-plane rotations. Comput. Struct. 89(7–8), 612–625 (2011)

    Google Scholar 

  46. Nguyen-Van, H., Nguyen-Hoai, N., Chau-Dinh, T., Tran-Cong, T.: Large deflection analysis of plates and cylindrical shells by an efficient four-node flat element with mesh distortions. Acta Mech. 226(8), 2693–2713 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Phung-Van, P., et al.: Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads. Nonlinear Dyn. 87(2), 879–894 (2017)

    MATH  Google Scholar 

  48. Phung-Van, P., et al.: Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis. Compos. B Eng. 164, 215–225 (2019)

    Google Scholar 

  49. Phung-Van, P., et al.: Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory. Compos. Struct. 123, 137–149 (2015)

    Google Scholar 

  50. Phung-Van, P., et al.: An efficient computational approach for control of nonlinear transient responses of smart piezoelectric composite plates. Int. J. Non-Linear Mech. 76, 190–202 (2015)

    Google Scholar 

  51. Phung-Van, P., et al.: An isogeometric approach for size-dependent geometrically nonlinear transient analysis of functionally graded nanoplates. Compos. B Eng. 118, 125–134 (2017)

    Google Scholar 

  52. Thanh, C.-L., et al.: The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory and isogeometric analysis. Comput. Methods Appl. Mech. Eng. 350, 337–361 (2019)

    MathSciNet  MATH  Google Scholar 

  53. Thanh, C.-L., et al.: Isogeometric analysis for size-dependent nonlinear thermal stability of porous FG microplates. Compos. Struct. 221, 110838 (2019)

    Google Scholar 

  54. Thanh, C.-L., et al.: Isogeometric analysis of functionally graded carbon nanotube reinforced composite nanoplates using modified couple stress theory. Compos. Struct. 184, 633–649 (2018)

    Google Scholar 

  55. Thanh, C.-L., Ferreira, A.J.M., Abdel Wahab, M.: A refined size-dependent couple stress theory for laminated composite micro-plates using isogeometric analysis. Thin-Walled Struct. 145, 106427 (2019)

    Google Scholar 

  56. Nguyen, H.X., et al.: A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory. Comput. Methods Appl. Mech. Eng. 313, 904–940 (2017)

    MathSciNet  MATH  Google Scholar 

  57. Atroshchenko, E., et al.: Weakening the tight coupling between geometry and simulation in isogeometric analysis: from sub- and super-geometric analysis to Geometry-Independent Field approximaTion (GIFT). Int. J. Numer. Meth. Eng. 114(10), 1131–1159 (2018)

    MathSciNet  Google Scholar 

  58. Marussig, B., et al.: Fast isogeometric boundary element method based on independent field approximation. Comput. Methods Appl. Mech. Eng. 284, 458–488 (2015)

    MathSciNet  MATH  Google Scholar 

  59. Yu, T., et al.: A stabilized discrete shear gap extended finite element for the analysis of cracked Reissner–Mindlin plate vibration problems involving distorted meshes. Int. J. Mech. Mater. Des. 12(1), 85–107 (2016)

    Google Scholar 

  60. Videla, J., et al.: h- and p-adaptivity driven by recovery and residual-based error estimators for PHT-splines applied to time-harmonic acoustics. Comput. Math. Appl. 77(9), 2369–2395 (2019)

    MathSciNet  MATH  Google Scholar 

  61. Hu, Q., et al.: Skew-symmetric Nitsche’s formulation in isogeometric analysis: dirichlet and symmetry conditions, patch coupling and frictionless contact. Comput. Methods Appl. Mech. Eng. 341, 188–220 (2018)

    MathSciNet  MATH  Google Scholar 

  62. Nguyen, V.P., et al.: Isogeometric analysis: An overview and computer implementation aspects. Math. Comput. Simul. 117, 89–116 (2015)

    MathSciNet  MATH  Google Scholar 

  63. Natarajan, S., Manickam, G.: Bending and vibration of functionally graded material sandwich plates using an accurate theory. Finite Elem. Anal. Des. 57, 32–42 (2012)

    Google Scholar 

  64. Natarajan, S., et al.: Natural frequencies of cracked functionally graded material plates by the extended finite element method. Compos. Struct. 93(11), 3082–3092 (2011)

    Google Scholar 

  65. Natarajan, S., et al.: Size-dependent free flexural vibration behavior of functionally graded nanoplates. Comput. Mater. Sci. 65, 74–80 (2012)

    Google Scholar 

  66. Natarajan, S., et al.: Linear free flexural vibration of cracked functionally graded plates in thermal environment. Comput. Struct. 89(15), 1535–1546 (2011)

    Google Scholar 

  67. Natarajan, S., et al.: Analysis of functionally graded material plates using triangular elements with cell-based smoothed discrete shear gap method. Math. Probl. Eng. 2014, 247932 (2014)

    MathSciNet  MATH  Google Scholar 

  68. Natarajan, S., et al.: A parametric study on the buckling of functionally graded material plates with internal discontinuities using the partition of unity method. Eur. J. Mech. A. Solids 44, 136–147 (2014)

    MathSciNet  MATH  Google Scholar 

  69. Xiang, T., et al.: Free vibration and mechanical buckling of plates with in-plane material inhomogeneity: a three dimensional consistent approach. Compos. Struct. 118, 634–642 (2014)

    Google Scholar 

  70. Mathew, T.V., Natarajan, S., Martínez-Pañeda, E.: Size effects in elastic-plastic functionally graded materials. Compos. Struct. 204, 43–51 (2018)

    Google Scholar 

  71. Nguyen-Xuan, H., et al.: A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates. Comput. Mech. 46(5), 679–701 (2010)

    MathSciNet  MATH  Google Scholar 

  72. Nguyen-Xuan, H., et al.: Isogeometric analysis of functionally graded plates using a refined plate theory. Compos. B Eng. 64, 222–234 (2014)

    Google Scholar 

  73. Nguyen-Xuan, H., et al.: A smoothed finite element method for plate analysis. Comput. Methods Appl. Mech. Eng. 197(13), 1184–1203 (2008)

    MATH  Google Scholar 

  74. Valizadeh, N., et al.: NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter. Compos. Struct. 99, 309–326 (2013)

    Google Scholar 

  75. Thai-Hoang, C., et al.: A cell — based smoothed finite element method for free vibration and buckling analysis of shells. KSCE J. Civ. Eng. 15(2), 347–361 (2011)

    Google Scholar 

  76. Thai, C.H., et al.: Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory. Mech. Adv. Mater. Struct. 22(6), 451–469 (2015)

    Google Scholar 

  77. Nguyen-Thanh, N., et al.: Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids. Comput. Methods Appl. Mech. Eng. 200(21), 1892–1908 (2011)

    MathSciNet  MATH  Google Scholar 

  78. Nguyen-Thanh, N., et al.: An alternative alpha finite element method with discrete shear gap technique for analysis of isotropic Mindlin-Reissner plates. Finite Elem. Anal. Des. 47(5), 519–535 (2011)

    Google Scholar 

  79. Yin, S., et al.: Isogeometric locking-free plate element: A simple first order shear deformation theory for functionally graded plates. Compos. Struct. 118, 121–138 (2014)

    Google Scholar 

  80. Zrahia, U., Bar-Yoseph, P.: Plate spectral elements based upon Reissner–Mindlin theory. Int. J. Numer. Meth. Eng. 38(8), 1341–1360 (1995)

    MATH  Google Scholar 

  81. Sprague, M.A., Purkayastha, A.: Legendre spectral finite elements for Reissner–Mindlin composite plates. Finite Elem. Anal. Des. 105, 33–43 (2015)

    MathSciNet  Google Scholar 

  82. Brito, K.D., Sprague, M.A.: Reissner–Mindlin Legendre spectral finite elements with mixed reduced quadrature. Finite Elem. Anal. Des. 58, 74–83 (2012)

    MathSciNet  Google Scholar 

  83. Patera, A.T.: A spectral element method for fluid dynamics: Laminar flow in a channel expansion. J. Comput. Phys. 54(3), 468–488 (1984)

    MATH  Google Scholar 

  84. Kim, S., Kim, S.D.: Preconditioning on high-order element methods using Chebyshev–Gauss–Lobatto nodes. Appl. Numer. Math. 59(2), 316–333 (2009)

    MathSciNet  MATH  Google Scholar 

  85. Dang-Trung, H., Yang, D.-J., Liu, Y.C.: Improvements in shear locking and spurious zero energy modes using Chebyshev finite Element Method. J. Comput. Inf. Sci. Eng. 19(1), 011006 (2018)

    Google Scholar 

  86. Liu, Z., et al.: Nonlinear behaviour and stability of functionally graded porous arches with graphene platelets reinforcements. Int. J. Eng. Sci. 137, 37–56 (2019)

    MathSciNet  MATH  Google Scholar 

  87. Li, Z., Zheng, J.: Analytical consideration and numerical verification of the confined functionally graded porous ring with graphene platelet reinforcement. Int. J. Mech. Sci. 161–162, 105079 (2019)

    Google Scholar 

  88. Reza Barati, M., Zenkour, A.M.: Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection. Compos. Struct. 181, 194–202 (2017)

    Google Scholar 

  89. Yang, J., Chen, D., Kitipornchai, S.: Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev–Ritz method. Compos. Struct. 193, 281–294 (2018)

    Google Scholar 

  90. Nguyen, Q.H., et al.: A three-variable high order shear deformation theory for isogeometric free vibration, buckling and instability analysis of FG porous plates reinforced by graphene platelets. Compos. Struct. 245, 112321 (2020)

    Google Scholar 

  91. Nguyen, N.V., et al.: A novel computational approach to functionally graded porous plates with graphene platelets reinforcement. Thin-Walled Structures 150, 106684 (2020)

    Google Scholar 

  92. Zhou, Z., et al.: Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells. Int. J. Mech. Sci. 151, 537–550 (2019)

    Google Scholar 

  93. Ansari, R., Torabi, J., Hasrati, E.: Postbuckling analysis of axially-loaded functionally graded GPL-reinforced composite conical shells. Thin-Walled Struct. 148, 106594 (2020)

    Google Scholar 

  94. Occorsio, D., Themistoclakis, W.: Uniform weighted approximation on the square by polynomial interpolation at Chebyshev nodes. Appl. Math. Comput. 385, 125457 (2020)

    MathSciNet  MATH  Google Scholar 

  95. Yamagishi, M.: A note on Chebyshev polynomials, cyclotomic polynomials and twin primes. J. Number Theory 133(7), 2455–2463 (2013)

    MathSciNet  MATH  Google Scholar 

  96. Kim, P., et al.: An error embedded method based on generalized Chebyshev polynomials. J. Comput. Phys. 306, 55–72 (2016)

    MathSciNet  MATH  Google Scholar 

  97. Sahmani, S., Fattahi, A.M., Ahmed, N.A.: Analytical treatment on the nonlocal strain gradient vibrational response of postbuckled functionally graded porous micro-/nanoplates reinforced with GPL. Eng. Comput. 36, 1559–1578 (2019)

    Google Scholar 

  98. Gao, K., et al.: Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation. Compos. Struct. 204, 831–846 (2018)

    Google Scholar 

  99. Ebrahimi, F., Dabbagh, A.: Vibration analysis of multi-scale hybrid nanocomposite plates based on a Halpin–Tsai homogenization model. Compos. B Eng. 173, 106955 (2019)

    Google Scholar 

  100. Wang, Y., et al.: Bending and elastic vibration of a novel functionally graded polymer nanocomposite beam reinforced by graphene nanoplatelets. Nanomaterials (Basel, Switzerland) 9(12), 1690 (2019)

    Google Scholar 

  101. Cong, P.H., Duc, N.D.: New approach to investigate the nonlinear dynamic response and vibration of a functionally graded multilayer graphene nanocomposite plate on a viscoelastic Pasternak medium in a thermal environment. Acta Mech. 229(9), 3651–3670 (2018)

    MathSciNet  MATH  Google Scholar 

  102. Boyd, J.P., Ong, J.R.: Exponentially-convergent strategies for defeating the Runge Phenomenon for the approximation of non-periodic functions, part two: multi-interval polynomial schemes and multidomain Chebyshev interpolation. Appl. Numer. Math. 61(4), 460–472 (2011)

    MathSciNet  MATH  Google Scholar 

  103. Boyd, J.P., Xu, F.: Divergence (Runge Phenomenon) for least-squares polynomial approximation on an equispaced grid and Mock-Chebyshev subset interpolation. Appl. Math. Comput. 210(1), 158–168 (2009)

    MathSciNet  MATH  Google Scholar 

  104. Fox, D.D., Simo, J.C.: A drill rotation formulation for geometrically exact shells. Comput. Methods Appl. Mech. Eng. 98(3), 329–343 (1992)

    MathSciNet  MATH  Google Scholar 

  105. Taylor, R.L., Auricchio, F.: Linked interpolation for Reissner-Mindlin plate elements: part II—A simple triangle. Int. J. Numer. Meth. Eng. 36(18), 3057–3066 (1993)

    MATH  Google Scholar 

  106. Nguyen-Thoi, T., et al.: A cell-based smoothed discrete shear gap method using triangular elements for static and free vibration analyses of Reissner–Mindlin plates. Int. J. Numer. Meth. Eng. 91(7), 705–741 (2012)

    MathSciNet  MATH  Google Scholar 

  107. SP Timoshenko and J. Gere, Theory of Elasticity, ed. 3rd. 1970, New York: McGraw-Hill.

  108. Noguchi, H., Kawashima, T., Miyamura, T.: Element free analyses of shell and spatial structures. Int. J. Numer. Meth. Eng. 47(6), 1215–1240 (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hieu Nguyen-Van.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ton-That, H.L., Nguyen-Van, H. & Chau-Dinh, T. A novel quadrilateral element for analysis of functionally graded porous plates/shells reinforced by graphene platelets. Arch Appl Mech 91, 2435–2466 (2021). https://doi.org/10.1007/s00419-021-01893-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01893-6

Keywords

Navigation