Skip to main content
Log in

Magnetic-field-controlled mechanical behavior of magneto-sensitive elastomers in applications for actuator and sensor systems

  • SPECIAL
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The development of actuator and sensor systems with complex adaptive behavior and operating sensitivity is one of the actual scientific challenges. Smart materials like magneto-sensitive elastomers (MSEs) offer great potential for designing such intelligent devices, because they possess unique magnetic-field-dependent properties. The present paper deals with investigations of the free and forced vibrational behavior displayed by cantilever beams of MSEs containing magnetically soft particles in a uniform magnetic field. It is shown experimentally as well as theoretically that the first bending eigenfrequency of MSE beams depends strongly on the strength of an applied magnetic field. The proposed magneto-mechanical model is based on the vibrational dynamics of thin rods and predicts reliably the amplitude–frequency characteristics depending on the geometric configuration of the MSE and its material parameters. It is found that the vibration response of an MSE beam under kinematic excitation of its base can be modified indirectly by a magnetic field control due to the change of the vibration characteristics. As a result, the resonance can occur in different ranges of the excitation frequency. The dependencies of the amplification ratio on the excitation frequency are obtained experimentally and compared with the result provided by the theoretical model. Moreover, investigations on the potential use of the field-induced plasticity effect of MSEs in form-fit gripper applications are presented. This effect can be used to realize shape adaptable system parts. It is found that the mechanical properties of each component and its concentration within the mixture have an impact on the mechanical behavior of the whole MSE compound. Such parameters as the strength of magnetic field and geometry of the MSE sample have influence on the quality of shape adaptation. The evidence presented provides a good basis for the realization of MSE-based actuator and sensor systems with adaptable sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Kallio, M.: The Elastic and Damping Properties of Magnetorheological Elastomers, vol. 565, p. 146. VVT Publications, Espoo (2005)

    Google Scholar 

  2. Varga, Z., Filipcsei, G., Zrínyi, M.: Magnetic field sensitive functional elastomers with tuneable elastic modulus. Polymer 47, 227–233 (2006)

    Article  Google Scholar 

  3. Melenev, P., Raikher, Y.L., Rusakov, V.V.: Plasticity of soft magnetic elastomers. Polym. Sci. A 52(4), 430–435 (2010)

    Article  Google Scholar 

  4. Melenev, P., Raikher, Y.L., Stepanov, G., Rusakov, V., Polygalova, L.: Modeling of the field-induced plasticity of soft magnetic elastomers. J. Intell. Mater. Syst. Struct. 22, 531–538 (2011)

    Article  Google Scholar 

  5. Yang, J., Sun, S., Du, H., Alici, G., Yan, T., Li, W.: Fabrication and characterization of magneto-rheological shear-stiffened elastomers. Front. Mater. 10, 2213 (2014)

    Google Scholar 

  6. Ivaneyko, D., Toshchevikov, V., Saphiannikova, M., Heinrich, G.: Mechanical properties of magneto sensitive elastomers unification of the continuum mechanics and microscopic theoretical approaches. Soft Matter 10, 2213–2225 (2014)

    Article  Google Scholar 

  7. Chavez Vega, J., Kaufhold, T., Schümann, M., Böhm, V., Zimmermann, K., Odenbach, S.: Soft robotic gripping of sensible objects using field-induced plasticity of magneto-sensitive elastomers. In: Proceedings of the 11th European Magnetic Sensors and Actuators Conference, Torino (2016)

  8. Zimmermann, K., Zeidis, I., Böhm, V., Kaufhold, T., Volkova, T., Waske, A., Krautz, M., Schrödner, M., Popp, J., Kästner, M., Spieler, C.: Mechanics of actuators based on magnetic hybrid materials with application for robotics, fluid control and sensor technology. Sci. J. IFToMM Probl. Mech. 57(4), 23–41 (2014)

    Google Scholar 

  9. Yang, J., Sun, S.S., Du, H., Li, W.H., Alici, G., Deng, H.X.: A novel magneto-rheological elastomer isolator with negative changing stiffness for vibration reduction. Smart Mater. Struct. 23, 105023 (2014)

    Article  Google Scholar 

  10. Kozlowska, J., Boczkowska, A., Czulak, A., Przybyszewski, B., Holeczek, K., Stanik, R., Gude, M.: Novel MRE/CFRP sandwich structures for adaptive vibration control. Smart Mater. Struct. 25, 035025 (2016)

    Article  Google Scholar 

  11. Hoang, N., Zhang, N., Du, H.: A dynamic absorber with a soft magnetorheological elastomer for powertrain vibration suppression. Smart Mater. Struct. 18, 074009 (2009)

    Article  Google Scholar 

  12. Du, H., Li, W., Zhang, N.: Semi-active variable stiffness vibration control of vehicle seat suspension using an MR elastomer isolator. Smart Mater. Struct. 20, 105003 (2011)

    Article  Google Scholar 

  13. Becker, F., Börner, S., Lysenko, V., Zeidis, I., Zimmermann, K.: On the mechanics of bristle-bots modeling, simulation and experiments. In: ISR/ROBOTIK 2014, Proceedings of the 45th International Symposium on Robotics, 8th German Conference on Robotics, Munich, Germany, pp. 15–20 (2014)

  14. Giomi, L., Hawley-Weld, N., Mahadevan, L.: Swarming, swirling and stasis in sequestered bristle-bots. Proc. R. Soc. A 469, 20120637 (2013)

  15. Zimmermann, K., Zeidis, I., Bolotnik, N.N., Pivovarov, M.: Dynamics of a two-module vibration-driven system moving along a rough horizontal plane. Multibody Syst. Dyn. 22, 199–219 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zimmermann, K., Zeidis, I., Behn, C.: Mechanics of Terrestrial Locomotion, pp. 274–276. Springer, Berlin (2009)

    MATH  Google Scholar 

  17. Kim, M.S., Yang, K.M., Lee, S.H., Yoon, J.H., Jeong, U.C., Yang, I.H., Oh, J.E.: Variable differential mount apparatus using magnetorheological elastomer. US 8844914 B2, September 30, 2014

  18. Thorsteinsson, F., Gudmundsson, I., Lecomte, C.: Prosthetic and orthotic devices having magnetorheological elastomer spring with controllable stiffness. US 9078734 B2, July 14, 2015

  19. Li, Y., Li, J., Li, W., Du, H.: A state-of-the-art review on magnetorheological elastomer devices. Smart Mater. Struct. 23, 123001 (2014)

    Article  Google Scholar 

  20. Ubaidillah, Sutrisno J., Purwanto, A., Mazlan, S.A.: Recent progress on magnetorheological solids: materials, fabrication, testing, and applications. Adv. Eng. Mater. 17(5), 563–597 (2015)

    Article  Google Scholar 

  21. Okatani, Y., Nishida, T., Tadakuma, K.: Development of universal robot gripper using MRa fluid. In: 7th International Conference on Soft Computing and Intelligent Systems and 15th International Symposium on Advanced Intelligent Systems (SCIS and ISIS 2014), Kitakyushu, December 3–6, 2014, Book of Abstacts, pp. 231–235

  22. Behrooz, M., Gordaninejad, F.: A flexible micro fluid transport system featuring magnetorheological elastomer. Smart Mater. Struct. 26, 025011 (2016)

    Article  Google Scholar 

  23. Becker, T.I., Chavez Vega, J., Böhm, V., Raikher, Y.L., Stolbov, O.V., Dutz, S., Zhou, M., Odenbach, S., Zimmermann, K.: Investigations of magneto-sensitive elastomers in context of actuator and sensor applications. In: 16th German Ferrofluid Workshop, Dresden, 2017, Book of Abstracts, pp. 92–93

  24. Volkova, T.I., Böhm, V., Kaufhold, T., Popp, J., Becker, F., Borin, D.Yu., Stepanov, G.V., Zimmermann, K.: Motion behaviour of magneto-sensitive elastomers controlled by an external magnetic field for sensor applications. J. Magn. Magn. Mater. 431, 262–265 (2017)

  25. Becker, T.I., Zimmermann, K., Borin, D.Yu., Stepanov, G.V., Storozhenko, P.A.: Dynamic response of a sensor element made of magnetic hybrid elastomer with controllable properties. J. Magn. Magn. Mater. 449, 77–82 (2018)

  26. Becker, T.I., Raikher, Yu.L., Stolbov, O.V., Böhm, V., Zimmermann, K.: Dynamic properties of magneto-sensitive elastomer cantilevers as adaptive sensor elements. Smart Mater. Struct. 26, 095035 (2017)

  27. Gundermann, Th. Odenbach, S.: Investigation of the motion of particles in magnetorheological elastomers by X-\(\mu \)CT. Smart Mater. Struct. 23, 105013 (2014)

  28. Kneller, E.: Ferromagnetismus. Springer, Berlin (1962)

    Book  MATH  Google Scholar 

  29. Osborn, J.A.: Demagnetizing factors of the general ellipsoid. Phys. Rev. 67, 351–357 (1945)

    Article  Google Scholar 

  30. Zakri, T., Laurent, J.P., Vauclin, M.: Theoretical evidence for ’Lichtenecker’s mixture formulae’ based on the effective medium theory. J. Phys. D Appl. Phys. 31, 1589–1594 (1998)

    Article  Google Scholar 

  31. Svetlitsky, V.A.: Dynamics of Rods. Springer, Berlin (2005)

    Google Scholar 

  32. Bozorth, R.M.: Ferromagnetism. Wiley-IEEE Press, New York (1993)

    Book  Google Scholar 

Download references

Acknowledgements

The work is funded by the research association between the Deutsche Forschungsgemeinschaft (DFG) and the Russian Foundation for Basic Research (RFBR) within PAK907 under the projects DFG PO 2013/1-1, BE 6553/1-1 and RFBR 16-51-12001, as well as by the DFG priority program SPP 1681, projects ZI 540-17/2 and OD18/22-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana I. Becker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becker, T.I., Böhm, V., Chavez Vega, J. et al. Magnetic-field-controlled mechanical behavior of magneto-sensitive elastomers in applications for actuator and sensor systems. Arch Appl Mech 89, 133–152 (2019). https://doi.org/10.1007/s00419-018-1477-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1477-4

Keywords

Navigation